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Supporting Text

Behavioral models. The imitation dynamic assumes that an individual samples
others in the population at some constant rate s and switches to the other person’s
strategy (if it differs from the individual’s current strategy) with a probability
proportional to the different in payoff between the two strategies, AE. The payoff to
vaccinate will be taken as

E, =B-c, (1)
where B >> ¢, represents a baseline payoff corresponding to a state of perfect
health and cy is the penalty for being vaccinated. Note that we assume a perfect
vaccine. The payoff not to vaccinate will be taken as

E, =B-cmL (2)
where c; is the penalty for being infected, m is a proportionality constant governing
the probability of infection (with B >>¢,m), and L is the number of case
notifications at time t, taken from the data in Figure 1 in the case of the behavioral
model (hence, we assume these case notification data reflect the actual disease
incidence experienced by the population up to a scaling factor). Equation (2) also
represents that individuals are using a ‘rule of thumb’ to determine their probability
of being infected, i.e., they assume it is simply linearly proportional to the current
incidence of infected individuals in the population. The payoff gain for a vaccinator
switching to a nonvaccinator strategy is therefore

AE, =E -E =c, —cmL (3)
Hence, if x is the proportion of vaccinators in the population at time ¢, it means a
vaccinator will encounter nonvaccinators at a rate s(1-x) (since they sample others
at rate s and a proportion 1-x of their encounters will be with a nonvaccinators).
Since there are x total vaccinators and the payoff gain is as in Equation (3), the total
rate at which individuals switch from vaccinator to nonvaccinator is

{sx(l -x)0(c, —c;mL) whenAE,  =c, -cmL >0

_ (4)
0 when AE, =c, —c,mL <0
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where 6is the proportionality constant from the probability of switching strategies
being proportional to the payoff gain. Similarly, the total rate at which individuals
switch from nonvaccinator to vaccinator is

{s(l -x)x0(-c,+c;mL) whenAE  =-c +cmL >0 (5)

0 when AE, =-c +cmL<0
where the payoff gain has a sign that is opposite that of Equation (3) since the
strategy switch is in the reverse direction. Therefore the total rate of change in the
number of vaccinators x is the rate at which nonvaccinators become vaccinators—
Equation (5)—minus the rate at which vaccinators become nonvaccinators—

Equation (4)—which yields

% =s0x(1 - x)(-c, +c,;mL) (6)
Using the substitutions
K =s0c,m (7)
and
w=c, /mc, (8)
this reduces to
dx
I Kkx(I-x)(~w+L), 9)

which is the behavioral model with both social learning and feedback. The
parameter w has absorbed ¢y which, unlike other parameters, evolves over time
with the perceived vaccination penalty. Hence w= «(t) is the risk evolution curve.

Equation (9) is the form we use for our parsimony analysis.

The simplest possible reduced behavioral model with social learning but no
feedback can be obtained by rewriting Eq. (9) as dx/dr = x(1 — x)(-kw(t) + kL)

= x(1 - x)(-w'(t) + kL), removing kL (since there is no feedback), and rewriting w’(t)
as w(t) for simplicity, yielding:

& 1= D)) (10)
dt
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which captures how coverage x decreases (dx/dt<0) when perceived vaccine risk is
higher (w(t)>0). Note that w(t) in this formulation can be positive or negative

depending on whether vaccinating or not vaccinating is favoured at a given time.

The simplest possible reduced behavioral model with feedback but no social
learning is:
x(1) = pL(1) - (1) (11)

which captures how x increases directly as w decreases or as L(t) increases.

Finally, the simplest possible reduced behavioral model with neither feedback nor
social learning is just:

x(t)=1-w(t) (12)
which captures how x increases as w decreases. In this case, vaccine coverage tracks

the inverse of perceived vaccine risk (penalty).

Risk evolution curves. A diagram of w(t) appears in Supplementary Figure 9: w(t)
is wpre before the scare, climbs linearly for Dincrease years to reach a maximum of
Owypre, and remains there for Dmaxyears before declining linearly back to wpre over
Ddecrease years. The five curves are #1 (> ;Dincrease =Dmax=0, fit Wpre, O, Ddecrease);
#2 (1L ; Dincrease =Ddecrease=0, fit tpre, 0; Dmax); #3 (= ; Dincrease =0, fit

Wpre, O, Ddecreases Dmax); #4 ( — L ; Ddecrease =0, fit wpre, 0, Dincrease; Dmax); #5 (— \—;

fit Wpre, O, Daecrease, Dincrease, Dmax)-

Parsimony analysis for behavioral model. We fitted models (9)-(12) to vaccine
coverage data in MATLAB R2008a. We used a trust-region reflective algorithm (a

nonlinear constrained optimization method).! We computed the maximum
n/2
likelihood estimator as M = e‘"/z/(2ﬂRSSW /n)"", where RSSvac is the residual sum

of squares of the fit between data and model and n is the number of data points.2

To evaluate parsimony we used a modification of the Aikaike Information Criterion
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intended for smaller datasets given by AICc = -2In(M) + 2/ + (21(1 + 1))/(11 -1-1),

where [ is the number of fitted parameters.3 Compared to conventional AIC, the
AlCc imposes a larger penalty for more parameters. The model with the lowest
AlCc is considered the most parsimonious. To obtain 95% confidence intervals for
the behavioral model with social learning and feedback, we adopted a non-
parametric bootstrap approach that involves resampling the residuals obtained
from fitting the model to the vaccine coverage data. We drew 1,000 bootstrap

samples with replacement in each case and fit the model to each sample and thus

obtained the bootstrap Gg(t) distribution of the estimator 6. Then the exact upper (1

- a) confidence limit for 0 is the value t*1-« such that Gg( t*1-«)=1-a. Confidence

intervals appear in supporting material.

Behavior-incidence model. Equation (9) was augmented with transmission

dynamics to become*

d
a5 _ u(l - ex) - uS - BSI -8
dt
1
E:—,ul+/3’SI—yI+rS (13)
d
(- x)(~w + 1)
dt

where S is the proportion susceptible, I is the proportion infectious, x is the
proportion that are vaccinators, u is the birth and death rate, ¢ the vaccine efficacy,
is the transmission rate, y is the recovery rate, and tis the case import rate. The
proportion recovered/immune is 1-S-1. In the x(t) equation, L(t) has been replaced
by I(t). The financial cost of the vaccine could be subsumed in the parameter, ¢; but
vaccine costs are not relevant in this case since both vaccines were freely available
through public health. Parents of infants are actually the decision-makers but we
assume that parents always maximize their children’s health. Initial conditions
were 5(0)=0.05, I(0)=0.0001, x(0)=0, and t(0)=1850. We set x=0.8 in 1946 for

pertussis (1965 for measles) to represent vaccine introduction. The baseline
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parameter values for pertussis were 1/y=22 days, Ro=17 (from which =Roy), e=1,
©=0.02/yr, and 7=3.7x10-¢/yr.>7 The baseline values for measles were the same
except 1/y=13 days and €=0.9.>7 Measles transmission varied seasonally according
to B(t)=bo(1 + bicos(t)) with b1=0.25/yr and bo= Roy.>7 A delay was introduced for
measles, modifying the x(t) equation to become

dx/dt = 1x(1 - x)(-w + I(t = §)) (14)

Epidemiological parameters were varied in PSA.

Parsimony analysis for behavior-incidence model. Numerical code was written

in C. Equation (13) was solved using a fixed stepsize fourth-order Runge-Kutta
algorithm (an adaptive stepsize algorithm was found not to converge). To search
the parameter space for the best fitting solutions, a shotgun hill-climbing algorithm 8
with adaptively shrinking search areas was used. We used the same maximum
likelihood estimator as for the behavioral model. The parameter k was fitted, as
were parameters according to which curve was used, and also ¢ in the case of MMR.
For the model with feedback but no social learning using the transmission model,
the last line of equation (11) becomes:

x(1) = pl(t) - (1) (15)

We used the same AICc measure as for the behavioral model.

Predictive analysis of behavior-incidence model. The model was fitted as
described above, except the RSS was a weighted sum of the RSS for both vaccine
coverage and disease incidence. The residual sum of squares for vaccine coverage

was computed as

n

RSS,,.= Y (Ci=x)’ (16)

i=1
where C; is the vaccine coverage in year i in the data and x; is the corresponding
vaccine coverage in year i in the model. Before computing the residual sum of
squares for disease incidence, we normalized the disease incidence for both model

and in the data according to:
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D =—= (17)

where d; is the raw disease incidence in year i before normalization and D; is the
normalized disease incidence. This ensured that disease incidence in model and
data could be compared at the same scale. The residual sum of squares for disease
incidence was then computed as

RSSinc = E(Dimdel - Didam)z (18)

i=1

model .

where D" is the normalized disease incidence in year i in the model and D{""is

1

the normalized disease incidence in year i in the data. To fit the data, we then
minimized the combined weighted error

E=RSS,,. +wWRSS,, (19)
where w is the weight parameter. We used w=1 for pertussis and w=0.01 for MMR.
The lower value for MMR is due to less information provided by case notification

time series compared to the pertussis vaccine scare. We varied w in PSA.

PSA for behavior-incidence model. PSA was conducted using the following
ranges—pertussis: Ro [14,20], y[1/25,1/19], ¢ [0.9, 1], T [0, 3.7x10-3], S(0) [0.025,
0.075],1(0) [0.00005, 0.00015], w [0.5, 1.5]; measles: Ro [14,20], y[1/15,1/11], ¢
[0.85, 0.95], T [0, 3.7x10-°], b1 [0.15, 0.35], S(0) [0.025, 0.075], 1(0) [0.00005,
0.00015], w[0.001, 0.05]. 50 samples were drawn from triangular distributions

based on these parameter ranges. For each sample, the model was fitted as before.

Bootstrapping for behavior-incidence model. The same bootstrapping method
was used for the behavior-incidence model as for the behavioral model, except that
both best-fitting incidence and vaccine coverage time series were resampled. 50
bootstrap samples were generated and simulated. For each sample, the model was

fitted as before.
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Analysis using correlated white noise. The AIC analysis for the behavioural
model and behaviour-prevalence model was repeated using correlated white noise
data instead of the empirical MMR vaccine coverage data. Correlated white noise

were generated according to the following algorithm:

C, =06+04 xrand
C,=05x(0.6+0.4 x rand)+0.5 x (Cl)
C,=05x(0.6+0.4 x rand)+0.5 x (Cz)

C, =05x(0.6+0.4 x rand)+0.5x(C,_,)

where rand is a random number between 0 and 1 generated from uniform
distribution and where Cx is the vaccine coverage in year k of the generated white
noise time series. Correlation between successive steps ensures that the generated
time series appears more smooth than a pure white noise time series would, and
hence is a stronger test of the behaviour-prevalence model. The analysis was
carried out for risk evolution curves #1-#5, but also for completely flat risk
evolution curve corresponding to no vaccine scare (0=1), denoted risk evolution
curve #6 (since the correlated white noise data by definition do not exhibit the same
secular trend that vaccine coverage data would during a vaccine scare). For each
risk evolution curve, we present figures of the best fitting model to the white noise
data as well as the AICc score and the natural logarithm of the maximum likelihood
function (for the behaviour-prevalence model) or the goodness-of-fit (for the
behavioural model), compared to the same for the best fitting model to the

empirical MMR vaccine coverage data.

Discussion of model selection exercise. By adding a sufficient number of free
parameters to the risk evolution curve it will always be possible to achieve an

arbitrarily good AICc score without adding social learning or feedback. The AICc

equation is AICc = -2In(M)+21+(2((1+1))/(n - 1 - 1) where In(M) is the logarithm of
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the maximum likelihood estimator M, I is the number of free parameters, and n is
the number of data points. Vaccine coverage data are reported only to two decimal
places. Hence, a risk evolution curve that matches the data exactly could be defined
using n-2 free parameters, where a first parameter is assigned to two time points
with identical vaccine coverage, a second parameter is assigned to another two time
points with identical vaccine coverage, and the remaining n-4 parameters are
assigned to the remaining n-2 time points. This would cause In(M) to become
infinite while the second and third terms remain of order n2. In intermediate cases,
it seems likely that we should always reach a point where enough free parameters
have been added to allow a “naked” risk evolution curve to outperform the
corresponding behavior-incidence model: in the current analysis that point was

reached with curve #5 with its five free parameters.
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