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Here we prove the two lemmas stated in the paper, give additional methods details
and computational tests, and provide additional experimental data. Lemma 1 shows that
the sequence search space can be accurately pruned in order to shorten the computational
search and make it more tractable. Lemma 2 shows that the K∗ algorithm has provable
guarantees on the sequence scores that it finds. Additional information is provided for the
training of the energy function weights. Table S1 gives the binding data for the 6223 peptides
from the CAL peptide array used in the main text [1]. We also provide the starting template
structural model of the CAL-CFTR complex.

S1 Extension of Provable Guarantees to Multiple Strands

The original proof of the K∗ algorithm showed that it could find an ε-approximation to the
K∗ score (where ε is a user-defined parameter) [2]. In this context, a ε-approximation means
(1− ε)K∗ ≤ K̃∗ ≤ 1

1−εK
∗, where K̃∗ is the computed K∗ score and K∗ is the true K∗ score.

This proof in [2] relied on the assumption that the ligand was small enough that a complete
partition function could be computed, which is generally true for enzyme active site designs
but not for protein-peptide (PPI) or protein-protein designs. This assumption was used not
only to prove the correctness of the intermutation pruning criterion, but also to compute an
ε-approximation to the K∗ score.

Having provable guarantees on the algorithm output ensures that any incorrect predic-
tions are due to the input model and not the search algorithm; this cannot be shown for
heuristic methods. Also, having provable guarantees can make it easier to accurately include
experimental data into the computational model.

The goal of the current paper is to expand K∗ to apply to protein-peptide and protein-
protein interactions. In these cases it is not guaranteed that either member of the bound
complex will be small enough to compute the complete partition function. Thus, we extend
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the previous proofs to handle complexes where both partners have approximate partition
functions.

Intermutation Pruning. The idea behind intermutation pruning is that it is possible to
provably show that, in some cases, a K∗ score for a candidate sequence that is currently
being computed will never be better than a K∗ score for a sequence that has already been
found. This pruning step significantly reduces the number of K∗ scores that must be fully
computed and increases the speed of the algorithm. The original proof can be found in
[2]. Given that K∗i ≥ γK∗0 , where K∗i is the K∗ score of the current sequence, K∗0 is the
best score observed so far, and γ is a user-specified parameter defining the number of top
scoring sequences we want an ε-approximation for, there exists an intermutation pruning
criteria for PPI designs. In the following lemma, n is the number of conformations in the
search yet to be enumerated, k is the number of conformations that have been pruned from
the search with DEE, E0 is the lower energy bound on all pruned conformations, R is the
universal gas constant, and T is the temperature. The full partition function for the protein-
protein complex, protein A, and protein B are q

AB
, q

A
, and q

B
respectively, while q∗

AB
, q∗

A
, and

q∗
B

denote the current calculated value of the partition functions during the computational
search.
Lemma 1. If the lower bound Et on the minimized energy of the (m + 1)th conformation
returned by A∗ satisfies Et ≥ −RT (ln(γεK∗0q

∗
A
q∗
B
−k exp(−E0/RT ))−lnn), then the partition

function computation can be halted, with q∗
AB

guaranteed to be an ε-approximation to the true
partition function, q

AB
, for a candidate sequence whose score K∗i satisfies K∗i ≥ γK∗0 .

Proof. Using the previous intramutation pruning methods [2], we can compute ε-approximations
for the partition functions of each protein. We have:

(1− ε)q
A
≤ q∗

A
≤ q

A

(1− ε)q
B
≤ q∗

B
≤ q

B
(S1)

Given K∗i ≥ γK∗0 , which is by definition
q
AB

(i)

q
A
(i)q

B
(i)
≥ γK∗0 , (where i denotes that the partition

function is for the ith sequence) we have that:

q
AB

(i) ≥ γK∗0qA(i)q
B

(i) ≥ γK∗0q
∗
A

(i)q
B

(i) ≥ γK∗0q
∗
A

(i)q∗
B

(i). (S2)

Next, by definition q = q∗ + q′ + p∗ where q′ is the partition function of the remaining
conformations and p∗ is the partition function of the pruned conformations, note that:

q′ ≤ n exp(−Et/RT ) (S3)

p∗ ≤ k exp(−E0/RT ) (S4)

If the following condition holds then the search can be stopped and we have an ε-approximation
to the partition function q

AB
(i):

n exp(−Et/RT ) + k exp(−E0/RT ) ≤ εK∗0γq
∗
A

(i)q∗
B

(i). (S5)



To show this use eqs. (S3) and (S4) to show that

q′ + p∗ ≤ εK∗0γq
∗
A

(i)q∗
B

(i) (S6)

and by eq. (S2)

q′ + p∗ ≤ εq
AB

(i) (S7)

which by the definition of q implies

q∗
AB

(i) ≥ (1− ε)q
AB

(i). (S8)

This shows that when designing multiple strands there exists an intermutation pruning
criterion that uses the stopping condition obtained from eq. (S5):

Et ≥ −RT (ln(γεK∗0q
∗
A
q∗
B
− k exp(−E0/RT ))− lnn) (S9)

Thus, if the stopping criterion is met then q∗
AB

is an ε-approximation to q
AB

. ut

K∗ Score Approximation. The proof that an ε-approximation can be found for the K∗ score
also requires that the ligand partition function be fully computed [2]. In PPI designs the
ligand partition function will not be fully computed so the K∗ approximation will no longer
be an ε-approximation but rather a σ = ε(2− ε) approximation is obtained.

Lemma 2. When amino acid substitutions (or flexible residues) are allowed on both strands
in a computational design, the computed K∗ score is a σ-approximation to the actual K∗

score, where σ = ε(2− ε).

Proof. The full K∗ score is denoted as K∗ =
q
AB

q
A
q
B

and the computed K∗ score as K̃∗ =
q∗
AB

q∗
A
q∗
B

.

We can then bound K̃∗ as follows:

max
(
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)

= max
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A
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B

)
=

q
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1

1− [ε(2− ε)]
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min
(
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= min
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(1− ε)q
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= (1− ε)K∗

Noting that (1− ε) ≥ 1− [ε(2− ε)], K̃∗ is bounded by

(1− ε(2− ε))K∗ ≤ K̃∗ ≤ 1

1− ε(2− ε)
K∗ (S10)

Which shows that given ε-approximations for all of the partition functions, we have a σ =
ε(2− ε) approximation for the computed K∗ value. ut

The two lemmas above provide provable guarantees for the K∗ algorithm when allowing
amino acid substitutions on multiple protein chains.



S2 Training of Energy Function Weights

To obtain accurate energetic predictions for the CAL-CFTR system, scaling parameters
for the van der Waals, electrostatics, and solvation energy terms were determined. The
best weights for each of these terms were found by training with 16 previously-determined
experimental Ki values for the CAL-CFTR system [1]. A gradient descent method was used
to determine the optimal energy weights. The initial weights used for the search were vdW:
0.7, dielectric: 20, solvation: 0.7. For each iteration of the search one energy weight parameter
was varied, and a K∗ score was computed for each sequence that had a known experimentally-
measured Ki. The Pearson correlation of K∗ score vs. 1/Ki was calculated and the weights
with the best correlation were used for the next iteration. Each parameter was varied 8 times
and the amount it varied was reduced on each iteration.

The best correlation found through the parameter search that maintains reasonable
K∗ scores is shown in Fig. S1. The correlations over the entire parameter search space range
from 0.0 to 0.75, which highlights the importance of choosing the correct weighting factors.
The parameters chosen for the design runs are as follows: a van der Waals scaling of 0.9, a
dielectric constant of 20, and a solvation scaling of 0.76. These parameters are reasonable
and similar to parameters used in previous designs. Since the peptide design occurs at the
surface of the protein, this necessitates the somewhat high dielectric constant.

S3 Recapitulation of CAL Motif at Positions 0 and -2 of the
Design Peptide

Comparison of K∗ scores against the HumLib array data already suggests that K∗ is able
to enrich for sequences that bind CAL. However, since the energy function was trained on
peptide sequences that all matched the CAL binding motif, it is important to determine
whether K∗ allows false positives at peptide positions 0 and -2. However, except for the
HumLib array, no additional CAL binding data exists for non-motif residues at positions 0
and -2. Therefore to do additional computational tests we must make the assumption that if
the peptide sequence matches the CAL motif it can bind CAL, and if it does not match the
motif it does not bind CAL. The HumLib data generally support this assumption, although
there are some peptide sequences that can bind CAL but do not match the motif (10 out of
5867 sequences).

A K∗ design search was conducted where positions 0 and -2 were mutated to all amino
acids (except Pro) while keeping positions -1 and -3 fixed to Arg and Val respectively. The
resulting ROC curve (Fig. S2) has an AUC = 0.94 which shows that K∗ has the ability to
recover the known CAL binding motif.
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S4 Supplemental Figures

Fig. S1. Correlation between K∗ score and experimental K−1i values for CAL PDZ peptide
inhibitors. Pearson Correlation of 0.75.

Fig. S2. A K∗ design search was conducted where positions 0 and -2 were mutated to all
amino acids (except Pro) while keeping positions -1 and -3 fixed to Arg and Val respectively.
The resulting ROC curve has an AUC = 0.94.



Fig. S3. CAL binding data for ProLib spot array. We selected the amino acid prefer-
ences of the last 4 C-terminal ligand residues based on their frequency deduced from
the 6223-Humlib and the substitutional analysis. For the CAL profile library of the type
bbbbB−3B−2B−1B0, we choose B−3 = A/C/D/E/F/I/K/L/M/N/Q/R/S/T/V/W/Y, B−2
= S/T, B−1 = A/C/D/E/F/I/K/L/M/N/ Q/R/S/T/V/W/Y, B0 = I/L/V for position -
3 through 0, respectively. Incubation condition: 10 µg/ml His-tagged CAL PDZ domain
detected by anti-His (Sigma; 1:2600)/anti-mouse-HRP (Calbiochem; 1:2000) antibody sand-
wich.


