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0B1. Primers used in this study 
 
The primers Tetreg-AflII-f, CYC1-BamHI-r, T2-Down-f and T2-Up-r were used to repair the 
second tetO2 site and amplify the PTETREG promoter from the pBB247 plasmid [1,2]. Five 
primers (Amp-AhdI-f, HIS3-Add1-r, HIS3-Add2-r, HIS3-Add3-r and HIS3-AfeI-r) were used to 
construct a small region homologous to the his3Δ200 locus in the pDN-T2dGZmh plasmid. The 
Origin-PstI-f and Origin-SacI-r primers were used to amplify a region without the ADH1 
terminator and insert it into the pDN-T2dGZmxh plasmid. Primers Tetreg-AflII-f, Second-tetO-f, 
CYC1-r, HISSeq-r, Origin-Pst-f, HISEnd-f, TADH-r, Origin-middle-f and GalSeqE-r were used 
for sequencing. 

Two primers, rtTABamHI2-f and VP16XhoI-r were used to amplify rtTA from the pBB140 
plasmid [1]. The shorter fragment without the ADH1 terminator sequence was amplified using 
the TRP-f and Origin-AflII-r primers. The primer rtTA-BamHI2-f was used with two other 
primers (FFF-Add-r and FFF-XhoI-r) in sequential PCR reactions to add a short FFF activation 
domain [3] to the rtTA-M2 variant [4]. The plasmids TRP-f, TRP-r, Origin-middle-f, CYC1-
BamHI-r, Tetreg-AflII-f, rtTA-BamHI2-f, FFF-XhoI-r, Backbone-r and Origin-AflII-r were used 
to sequence the intermediate pDN-T2dAot and the final pDN-T2dMFot regulatory plasmids.  

 
1B2. Collection and processing of flow cytometry data 
 
11B2.1. Preprocessing of flow cytometry data 
 
Population-level statistics of fluorescence intensities in single yeast cells were obtained using 
flow cytometry. During each run, ~50,000 cells were measured to obtain their forward scatter 
(FSC), side-scatter (SSC), and fluorescence intensity (FL1) values, which were classified into 
logarithmic bins of three histograms. Considering that the FSC value correlates with cell size 
while the SSC value correlates with cell granularity, we filtered the data considering only cells 
within a narrow gate in the [ln(FSC), ln(SSC)] space, to minimize the effects of “extrinsic” noise 
originating from variations in cell size or age. 
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Ideally, the gate used to reduce extrinsic noise should have minimal area while maximizing 
the number of measured events for each sample. This requires for the gate to be centered at the 
region of highest cell density within the [ln(FSC), ln(SSC)] space. In addition, we aimed to 
collect fluorescence measurements of similar-sized cells from various samples. To achieve this, 
we established and maintained a fixed elliptic gate for all fluorescence measurements based on 
the observation that the FSC-SSC scatter plots were consistently similar throughout all inducer 
concentrations for both strains. Therefore, we pooled [ln(FSC), ln(SSC)] values from cells grown 
at various ATc concentrations, and then we fit a two-dimensional normal distribution to the 
pooled ln(FSC)-ln(SSC) histogram using the “gmdistribution.fit” function in Matlab. The 
resulting two-dimensional normal distribution had [ln(FSC), ln(SSC)] means of  

[ ] [ 1.48.421 =μμ  and a covariance matrix of , where the 

subscript “1” corresponds to ln(FSC), while the subscript “2” corresponds to ln(SSC). Finally, 
we defined the gate by the boundary where this normal distribution reached 90% of its maximum 
value. On average 5168±1681 (but always more than 1500) cells were collected within the fixed 
elliptic gate during each measurement. 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
34.022.0
22.021.0

2221

1211

σσ
σσ



12B2.2. Detecting gene expression bimodality and classifying cells as high or low expressors 
 

A crucial component of our data analysis was detecting bimodality of fluorescence distributions 
measured by flow cytometry. Because some of our fluorescence data exhibited skewed, non-
normal modes, detecting bimodality using Gaussian mixture models was problematic [5]. 
Defining bimodality based on a local minimum in fluorescence histograms between two maxima 
was difficult as well, since the number of cells in each fluorescence bin was subject to 
Poissonian noise [6].  

 
We classified a cell population as having bimodal expression if the fluorescence histogram had a 
local minimum between two distribution maxima, or “peaks”. However, variations in the 
numbers of cells classified within a bin during flow cytometry measurements could result in false 
positives since noisy cell counts could also result in local minima. Thus, we used statistical tests 
to rigorously distinguish significantly bimodal distributions from distributions whose apparent 
bimodality was due to random fluctuations from flow cytometric binning of cells. 

Gated fluorescence intensity histograms were first smoothed with a 32-point moving average 
to estimate the expected number of events for each fluorescence bin. Since the number of events 
for a bin is approximately Poissonian [6,7], we expect the variance for the number of events 
within each bin to be equal to the average number of events. Furthermore, since the average 
number of events is obtained by smoothing, the Central Limit Theorem states that this smoothed 
data should tend towards a normal distribution whose standard deviation is equal to the number 
of cells detected, divided by the square root of the number of points used for smoothing 
(i.e. 32 ).   

Given two local maxima of heights hL and hR, located to the (L)eft and (R)ight of a local 
(M)inimum of height hM, we rejected the null hypothesis that the distribution was unimodal if hM 
was at least 4 standard deviations (estimated at each local maximum) lower than both hL and hR,  
 

43244

43244

>⇔=>−

>⇔=>−

RRRRM

LLLLM

zhhh

AND
zhhh

σ

σ
. [1] 

 
In the dose-response measurements, the cutoff used to separate high- and low expressor 
subpopulations for any individual histogram was defined as the location of the local minimum 
(see for example Figure SX1X, where the bimodality detection algorithm was applied to yeast cells 
carrying a different gene circuit, with less distinct fluorescence peaks). If multiple significant 
minima were observed, then we selected the minimum with the highest product of z-scores, 
 

)max( RL zz × , [2] 
 
as the adaptive cutoff for separating low and high expressor subpopulations. 

For experimental cellular memory measurements based on relaxation towards a stationary 
distribution, following fluorescence-activated cell sorting (FACS) of cells into high and low 
expressors, we used constant cutoffs to classify cells into low and high expressor subpopulations. 
The cutoffs were chosen as 50 arbitrary fluorescence units (a.u.) for PF cell populations. The 
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relaxation of the subpopulation ratio R(t)=NL/NH to its asymptotic value was followed in time to 
estimate stochastic switching rates between high and low yEGFP expression. 
 
13B2.3. Elimination of outliers 
 
Flow cytometry measurements may involve a small number of contaminating “events” due to 
mutated cells that have lost the integrated PF construct (due to homologous recombination), or 
due to rare leftover cells from previous samples which may not have been completely eliminated 
from the flow cytometer. A small population of such contaminants could strongly affect standard 
deviation-based measures, such as the coefficient of variation (CV). Thus, we eliminated distant 
outliers in all flow cytometry measurements by two different methods depending on whether the 
gene expression was bimodal or not. For unimodal populations, we eliminated cells more than 3 
standard deviations above and below the mean of the log-transformed data. For bimodal 
populations we eliminated cells more than 3 standard deviations below the mean of the low peak 
in the log-transformed FL1 data, as well as cells more than 3 standard deviations above the mean 
of the high peak in the log-transformed FL1 data. 
 
2B3. Deterministic mathematical model of cells carrying the PF gene construct 
 
The PF gene circuit was modeled using a system of ordinary differential equations (ODEs) [8,9] 
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where F(x) = xn/( φn + xn), and the variables w, x, y and z correspond to inactive and active 
intracellular TetR, inducer and reporter concentrations, respectively, while C is a control 
parameter proportional to the extracellular inducer concentration. Other parameters are a (protein 
synthesis rate), b (inducer-repressor association rate), δ (degradation rate), g (rate of dilution due 
to cell growth), and h (combined rate of inducer dilution, outflux and degradation). Whenever 
possible, parameters in these equations were obtained from the literature, while the remaining 
unknown parameters were estimated by fitting the ODEs to the experimentally observed sub-
population means. 

Using this set of parameters, we studied the dynamic behavior of the system described by the 
system of ODEs [X3X]. Considering that z does not affect any of the other variables, it is sufficient 
to analyze the first three ODEs. Using the notation v=x+w, after adding the first two ODEs, and 
considering that at most ATc concentrations overall protein synthesis and degradation are rate-
limiting processes, the second and third equations equilibrate at relatively fast time scales to 
give: 
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from where, considering the only physically meaningful solution of a quadratic equation x can be 
expressed as a function of v as 
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Expressing the differential equation in terms of synthesis and degradation terms,  
 

(( ) ( ) [ ( )]v k v k v aF x v l g vδ+ −= + = + − +&  [6] 
 
The intersection points of the curves k+(v) and k-(v) correspond to the steady states of the system. 
We can now apply rate balance analysis [10] to determine the stability of these steady states. 
Varying the parameter C, we observe that the system undergoes a saddle-node bifurcation where 
a single stable steady state splits into three steady states, two of which are stable, while the third 
is unstable (see Figure SX2X).  
 
3B4. Using escape rate theory to estimate cellular memory  
 
Intuitively, we expected the PF construct to have a strong non-genetic memory of the high 
expression state due to bistability, whereby the incorporation of a positive feedback loop coupled 
with a nonlinear promoter response exaggerates the stability of cells staying in either low 
expression states or high expression states. Consequently, low expressors do not produce 
transcriptional activator, while high expressors produce transcriptional activators at an elevated 
rate, in agreement with the understanding that positive feedback favors bimodal gene expression 
[1,11].  

 
14B4.1. Calculating the Mean First Passage Time (MFPT) 
 
The first method we applied to estimate the memory of the low and high yEGFP::zeoR 
expression states was based on escape rate theory. We calculated the mean first passage time 
(MFPT) across a preset threshold [12,13] of regulator expression, after converting the set of 
ODEs [7] into Fokker-Planck equations (see below). The equations used to calculate the MFPT 
based on steady-state solutions (distributions) of the Fokker-Planck equations for the PF strain 
are given below, while the corresponding parameters are listed in Table SX2X. 

We defined the mean first passage time (MFPT) as  
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where τ(v, vb) is the first passage time from the starting molecular concentration v to the 
boundary concentration vb=θ and ps(v) is the stationary probability of a cell having an initial rtTA 
concentration of v. The parameter v denotes total rtTA concentration (x+w=v) for PF cells. 

The stationary probability distribution ps(v) (Figure S3A) was obtained using the Fokker-
Planck approximation of the Chemical Master Equation [14], defined as 
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where μ is the deterministic “mean” drift coefficient and σ is the stochastic diffusion coefficient 
as a function of the molecular species concentration v. Knowing μ and σ, the Fokker-Planck 
equation [X9X] can be formally solved and the corresponding solution can be numerically estimated 
based on the equation  
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fulfills the role of a type of chemical potential. 

The Dynkin equation [12],  
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was then used to obtain the first passage time (Figure S3B) for cells with a starting concentration 
v0 to arrive at the boundary concentration θ, denoted τ(v,θ).  

Using quasi-steady state approximations of [X3X], we approximate the drift μPF and diffusion 
σPF functions for total rtTA concentrations (v =x+w) as 
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where Ω denotes the cell volume. Active rtTA levels (x) are given as a function total rtTA (v) by 
equation [X5X]. 

Having defined the MFPT in terms of the Dynkin equation, we asked if we could apply a yet 
simpler analytical approach to calculate cellular memory.  

Kramer’s escape rate theory treats stable states as potential wells that can be approximated by 
a quadratic function at the extrema of the chemical potential [15-17]. Approximating the 
potential around extrema as a second order Taylor expansion results in: 
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where 
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and vmin is a stable steady state of the system, and vboundary is an unstable steady state defining the 
boundary condition (similar to φ).  
 
When the diffusion term (σ) is practically constant, U(v) is approximately 
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The MFPT [X8X] can then be approximated as 
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Applying this formula to the PF equations (Table SX2X, eqn [X13X]) gave the MFPT predictions in 
figure XS3XC. 
 
 
4B5. Overall cell population fitness and instantaneous cellular fitness  
 
Fitness is an important phenotype that describes the rate of increase in the relative number of 
individuals carrying a certain genotype. The source of increase in cell population size is the 
division of individual cells. Therefore, fitness measured at the cell population level (by 
competition experiments or population growth assays) must be dependent on the time necessary 
for individual cell division events. There is a tacit assumption that population-level 
measurements represent the typical rate of cell division, which is uniform across the population. 
However, this assumption is not always true. Just like the average of gene expression does not 
always represent any typical cell, the overall growth rate of a cell population may not always 
represent the division time of any individual cell. This is particularly true for PF cells that 
differentiate into states characterized by very different gene expression levels and cell division 
times. To properly establish the connection between individual cell division times and cell 
population growth, we define two types of fitness: instantaneous cellular fitness and overall cell 
population fitness. The first (instantaneous cellular fitness) is defined as the inverse of the time 
of a full cell cycle for cells with gene expression level v. 
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The second  type of fitness (overall cell population fitness) is the rate of increase of the relative 
population size, or the change in the total number of cells over time ( ) divided by the total 
number of cells (NT), 

TN&
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The connection between the instantaneous cellular fitness and overall cell population fitness can 
be expressed as: 
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where p(x) is the probability density function of cells at the state x. That is, gT is the arithmetic 
average of the instantaneous fitness weighted by the probability distribution of cellular states.  
 
15B5.1. Instantaneous cellular fitness reduction due to Zeocin toxicity 
  
We modelled Zeocin toxicity as DNA transitioning to a damaged state due to Zeocin binding and  
inducing DNA strand breaks. We also assumed that DNA damage repair occurred at a constant 
rate faster rate than cell division time, so that the instantaneous fitness reduction was 
proportional to the fraction of time that DNA remained undamaged. The quasi-stationary 
solution for the instantaneous fitness reduction due to DNA damage was defined as 
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where Zi is the intracellular Zeocin concentration and χ is the rate of DNA repair divided by  the 
rate of Zeocin-induced damage accumulation.  

To determine Zi, Zeocin was assumed to diffuse into and out of the cell, and bind irreversibly 
to yEGFP::ZeoR. Intracellular Zeocin concentration was modeled by mass action kinetics: 
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where Z, B, and R are external Zeocin, Zeocin-bound and free yEGFP::ZeoR concentrations, 
respectively. The total fluorescence F imposes the constraint F=R+B. The rate constants are hZ 
(Zeocin diffusion out of the cell membrane), s (yEGFP::ZeoR binding affinity for Zeocin), and d 
(yEGFP::ZeoR degradation/dilution rate, assumed to be constant for simplicity). Assuming that 
free Zeocin equilibrates quickly, we obtained the intracellular Zeocin concentration from [X20X] as 
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16B5.2. Instantaneous cellular fitness reduction due to rtTA-associated toxicity 
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There are several sources of toxicity that cells may experience when their rtTA and 
yEGFP::zeoR expression levels are high. Toxicity may come from the rtTA protein itself due to 
the so-called “squelching” effect, due to  rtTA’s VP16 activation domain, which can sequester 
general factors involved in eukaryotic gene expression, such as ADA2, TFIIB, TFIID, etc – see 
[3] and references therein. In addition to these earlier findings, we propose a specific fitness 
decrease due to the ATc-bound form of rtTA. We have three lines of evidence that support this 
proposal. 

First, we compared uninduced PF cells (no rtTA) to cells with cells constitutively expressing 
rtTA (PR cells, Figure SX5XA) in the absence of ATc. As expected, we noted a drop in fitness of 
PR cells due to constitutive rtTA expression (see Figure SX5XC). Subsequently, we compared the 
fitness of PF and PR cells in the absence and presence of saturating ATc concentrations (200 
ng/ml) to determine the effects of free and ATc-bound rtTA proteins. We noted an additional 
decrease in fitness for PR cells grown in 200 ng/ml ATc (compared to PR cells grown in 0 ng/ml 
ATc). Since rtTA expression in this strain is constitutive, total rtTA expression is constant and 
independent of ATc. Taken together with the fitness decrease at 200 ng/ml ATc, this suggests 
that the ATc-bound form of rtTA had stronger toxicity than rtTA alone (see Figure SX5XC). 

Second, we created two alternative models of rtTA toxicity and used them to predict the 
overall cell population fitness in 2 mg/ml Zeocin. The first alternate model assumed that fitness 
was best described as a decreasing function of UtotalU rtTA expression, given as: 
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The second alternative model separately attributed toxicity to both forms of rtTA (active and 
inactive). These rtTA forms had different toxicities, as modeled by the equation: 
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Both models were able to account for the general trends of overall cell population fitness 
(i.e., presence of “sweet spot”) in the presence of Zeocin when memory was taken into account 
(see Figure SX5XD and E). However, consistent with observations of PF fitness, we found that 
active ATc-bound rtTA was the variable most predictive of overall cell population fitness in new 
environments. 

The third and final evidence comes from the literature. ATc binding to rtTA should affect the 
DNA-binding ability of this activator, suggesting that rtTA toxicity increases upon its binding to 
DNA. For the VP16 activator domain in another chimaeric construct it was shown that mutating 
the DNA-binding domain of the protein fusion abrogated activator toxicity [18]. 

In addition to the toxicity directly attributable to the rtTA protein itself, cells in the high 
expressing state may experience additional, indirect toxicity due to the costs of rtTA and 
yEGFP::zeoR transcription and translation [19,20]. To test if this was the case we performed an 
additional experiment using a strain called PFX (Figure SX5XB), which was identical with PF, 
except that it lacked the yEGFP::zeoR coding region (Figure 2A). We found that the fitness 

 9



reduction in PFX cells at large concentrations of ATc was smaller than that for PF cells, 
suggesting that the transcription and/or translation in the reporter gene are metabolically costly 
and further augment rtTA toxicity in high expressor cells (Figure SX5XF).   

Without knowing the exact contributions of intracellular rtTA toxicity (squelching, 
transcriptional and translational burdens), we may nonetheless define the instantaneous cellular 
fitness reduction, γ2(x,C)=g(x,C)/g0 phenomenologically through the Hill function [11]  
 

x+
=
α
αγ 2 ,  [24] 

 
where α is a constant that relates active rtTA (x) concentration to activator toxicity. Because 
active rtTA (x) concentration cannot be measured directly, we estimated it from the fluorescence 
concentration (F) and ATc (C), using the approximation b(v-x)C=dx as 
 

β+
∝

C
CFx , [25] 

 
where fluorescence (F) is a proxy for total rtTA, and the fit parameter β represents the efficiency 
of ATc-rtTA binding. Assuming that the main source of toxicity is ATc-bound rtTA, the 
instantaneous fitness reduction can be defined from [X24X] and [X25X] as 
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17B5.3. The combined instantaneous cellular fitness 
 
Considering that different mechanisms underlie the toxicities of rtTA and Zeocin toxicity 
(sequestration of general transcription factors and DNA damage, respectively), we assumed Bliss 
independence [21] and calculated the combined instantaneous fitness reduction due to rtTA and 
Zeocin toxicity as the product of their individual effects: 
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The Loewe model of drug additivity can be used alternatively to the Bliss independence 

model.  In contrast to the Bliss independence assumptions of different mechanisms of toxicity, 
Loewe additivity assumes that toxic molecules act on the same biological site, but differ in their 
toxicity[22]. Loewe additivity takes the form: 
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where x(F,C) was previously defined ([X25X]) and ι is the interactivity index. For negative ι the 
toxic molecules are antagonistic, for positive ι the toxic molecules are synergistic. We created an 
alternative set of fitness landscape predictions for antagonistic interactions (ι=-100), neutral 
interactions (ι=0), and synergistic interactions (ι=100 to 500) as shown in Figure SX6XG and H 
[23]. There were almost no qualitative changes between the different models incorporating 
memory—as synergism increased the fitness decreased, but the curve consistently peaked at 1 
ng/ml ATc at 2 mg/ml Zeocin, and slowly declined as ATc was increased.  
 
5B6. Using the cellular current for estimating cellular memory with differential fitness 
 
Stationary fluorescence distributions of growing cell populations do not imply the lack of 
fluorescence changes in individual cells. On the contrary, random and regulated gene expression 
changes in single cells induce their constant movement within such distributions. Specifically, 
upward cellular movement within the distribution corresponds to increasing intracellular 
fluorescence, while downward movement corresponds to decreasing intracellular fluorescence. 
To characterize cellular movement and division within stationary distributions, we introduce the 
concept of cellular current, which is somewhat analogous to the electric current through a preset 
cross-section within a cable. 

We define UdirectionalU cellular currents as the number of cells (NH→L, and NL→H) that move 
in a given direction (leftward and rightward within the fluorescence distribution, respectively
through a preset fluorescence concentration threshold (F) per unit time: 
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where the “fluorescence concentration” is defined by the relationship  
 

F

PF
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where ΩF is a parameter relating intracellular yEGFP::ZeoR protein copy number (P) to 
measured fluorescence “concentrations”.  

The net cellular current is the difference of directional cellular currents: 
 
( ) ( ) ( )FIFIFI −+ −= . [31] 

 

Consider a stationary distribution with uniform instantaneous growth rates g(F) that are equal 
to the overall growth rate gT (flat nongenetic fitness landscape). Every region enclosed by 
fluorescence values (F1,F2) in such a distribution will increase at rate gTN(F1,F2,t), where 
N(F1,F2,t) is calculated via the integral: 
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while ∂N(F,t)/∂F is the local cell density estimated at time t, as the overall cell number NT 
multiplied by the probability density function of fluorescence p(F,t). 

While random movement in- and out of such regions is possible, the cellular current exiting 
the region enclosed by fluorescence values F1<F2, must equal 0 (or else the distribution would be 
reshaped). This is expressed by the continuity equation: 
 

( ) ( ) ( ) 0, 1221 =−=Δ FIFIFFI , [33] 
 
which implies that the net currents I(F1) and I(F2) are equal: 
 
( ) ( )12 FIFI = . [34] 

 
If the two fluorescence values F1 and F2 approach each other, the above equation implies that the 
gradient of the net cellular current must be equal to 0: 
 

00)()(),( =
∂
∂

⇒=Δ
∂
∂

≈−Δ+=Δ+Δ
F
IF

F
IFIFFIFFFI . [35] 

 
This implies that the net cellular current must be constant across the distribution.  However, the 
net cellular current exiting the region enclosed by 0 and any finite fluorescence value is 0. Since 
no cells can exit the distribution at F=0, this implies that the net cellular current must vanish 
everywhere: 
 
( ) 0== constFI . [36] 

 
We also note the following: 
 

( ) ( ) ( )[ ] ( ) ( )[ ]

F
I

F
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F
I

F
I

FIFFIFIFFIFFFI
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0

,
, [37] 

 
From where we obtain a relationship for the directional currents 
 

( ) ( )FIFI LHHL →→ =  [38] 
 

In summary, the up- and downward directional currents should cancel and the net cellular 
current should be 0 across any preset threshold or within any preset region of a stationary 
distribution in the absence of instantaneous fitness changes. This is somewhat equivalent to 
non-interacting charged particles in thermal motion that randomly cross over a preset section or 
volume in a cable. While separate currents may exist in both directions, for large enough cross-
sections, in the absence of power sources they cancel each other out and the net current is 0. In 
electricity, the continuity equation has similar integral and differential forms as the cellular 
current above. Yet, a major difference between the cable and the cell population is that the latter 
is in constant growth. This is equivalent to electromotive forces pumping charges uniformly into 
the cable at every point along its length. Since the rate of charge accumulation is uniform along 
the cable, it will not contribute to the net current across any section of the distribution. 
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The situation changes, however, when the sources pump charge into the cable at varying 
rates along its length. In this case, a net current appears that is determined by the difference 
between the rates of charge accumulation at various points along the cable. Likewise, 
fluorescence-dependent instantaneous fitness changes (due to rtTA activation, for example) can 
have serious implications for the cellular current. Specifically, when local fitness is greater than 
overall fitness, g(F)>gT, the extra cells produced per unit time must leave the region to reduce the 
rate of cell number increase to gT[∂N(F,t)/∂F]∆F . Therefore, regions of higher fitness within a 
distribution will act as electromotive forces that constantly pump cells into the distribution. 
Consequently, at stationary state the continuity equation should equate the net cellular current I, 
exiting a region enclosed by fluorescence values F1<F2 with “the cell number increase expected 
from the local fitness” minus “the actual cell number increase inferred from overall fitness”: 
 

( ) ( ) ( ) ( )21212121 ,,,, FFNgFFNFFgFFI T−=Δ  [39] 
 
Taking F1=F and F2=F+∆F, after approximating the number of cells in the region by 
∆F[∂N(F,t)/∂F], the continuity equation becomes:  
 

( ) ( ) ( )[ ] F
F
NgFgF

F
NgF

F
NFgF

F
IFFFI TT Δ

∂
∂

−=Δ
∂
∂

−Δ
∂
∂

=Δ
∂
∂

=Δ+Δ ,  [40] 

 
This can be written in the differential form 
 

( )[ ]
F
NgFg

F
I

T ∂
∂

−=
∂
∂  . [41] 

 
 
18B6.1. Calculating the downward cellular current for the PF gene circuit 
 
The change in cell number from 0 to F fluorescence, N(0,F), can be attributed to two factors: cell 
division and biochemical kinetics. Since no cells transition from positive fluorescence to 
negative fluorescence, this can be expressed by the relationship 
 

t
F

F
N

t
N

dt
dN

∂
∂

∂
∂

−
∂
∂

=  

 
The first term on the right hand side (RHS) is the cell division rate, ∂N(0,F)/∂t =g(0,F)N(0,F). 
The second term is the net cellular current at fluorescence F (recall that cellular current is 0 
across F=0, from positive to negative fluorescence). 

The net cellular current is the product of two terms. The first of these terms refers to the 
density of cells per unit fluorescence, ∂N(F,t)/∂F. Practically, this is estimated from flow 
cytometry data as the number of cells in a fluorescence bin divided by the range of fluorescence 
(bin width). The second term, ∂F/∂t, refers to biochemical dynamics, and can be written as 
 

)()( FF
t
F δβ −=
∂
∂ . 
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where β and δ are birth and death rates, respectively, in the abstract sense – meaning that death 
can occur through dilution (not just active degradation). 

For stable proteins, such as yEGFP::ZeoR, the primary cause of downward cellular current 
within stationary fluorescence distributions is dilution due to cell growth. For example, 
considering the PF gene circuit, the number of yEGFP::ZeoR proteins is practically unaffected 
by active degradation. Rather, yEGFP::ZeoR protein concentration dilutes out due to cell growth, 
which is practically the only mechanism lowering the fluorescence concentration F. Based on the 
definition of the cellular current [X29X], assuming that cell division rate is also the rate at which 
cells grow and dilute proteins, 
 

)()( FFgF
t
F

−=
∂
∂ β , which implies that: ( ) ( ) ( ) [ ])()(),(,0,0,0 FFgF

F
tFNFNFg

dt
FdN

−
∂

∂
−= β , 

 
and 
 

)(),()( FFg
F

tFNFI LH ∂
∂

=→ . [42] 

 
19B6.2. Calculating the upward cellular current for the PF gene circuit 
 
The upward cellular current is subject to many unknown or difficult-to-model factors. 
Translation of yEGFP::ZeoR molecules is affected by ribosomal reactions, polymerase reactions, 
rtTA binding to DNA, and other confounding mechanisms. Thus the gradient of the upward 
cellular current can be obtained indirectly by rearranging [X31X,X41X] to give: 
 

( )[ ]
F
FNgFg

F
FI

F
FI

T
LHHL

∂
∂

−+
∂

∂
=

∂
∂ →→ )()()(

.  [43] 

 
By integration we obtain the upward cellular current as 
 

( )[ ]∫ −+= →→

θ

θθ
0

)()()( dFFpgFgNII TTLHHL .  [44] 

 
20B6.3. Estimating the cellular memory based on the cellular current  
 
We estimated the fraction of cells (r)ising out of the (L)ow state as  
 

( )
L

HL

N
I

r
θ→= , [45] 

 
while the fraction of cells (f)alling out of the (H)igh state is  
 

( )
H

LH

N
I

f
θ→= . [46] 
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Since NT is present in all of the cellular current terms, the rise and fall rates may be calculated by 
the fraction of cells in the low (NL/ NT) and high (NH/ NT) expressor states without explicitly 
measuring NL, NH, or NT.  

Memory is defined as inversely proportional to the rate at which cells leave a state, 
 

( )2ln1−= rLτ  [47] 
 

( )2ln1−= fHτ , [48] 
 
with the ln(2) term implying a “half life” form of cellular memory.  
 
21B6.4. Estimating the error from cellular current  
 
To estimate the cellular current, we chose boundaries between low and high expressor states at 
the minima between the two fluorescence peaks. Since the number of cells collected in the 
chosen flow cytometry bins can be quite low (often empty), the resolution of p(F) may be poor. 
The rising rate (r) was not severely affected by this, since it was determined from the sum of the 
small downward (high to low) current and an integral over a large number of cells. To quantify 
the resolution (the smallest observable difference in f) we calculated f assuming that only 1 cell 
had been observed within a flow cytometry bin at the fluorescence boundary. We observed a 
resolution of ~0.0208 /h.  

To increase the resolution of f estimation, we smoothed the distributions until the minima 
between peaks became non-zero. The highest level of smoothing used was s=80, with a 
correspondig resolution of ~2.6× 10-4 /h. However, this increased resolution came at a cost of 
overestimating the probability of cells being in the minimal bin, which in turn resulted in 
overestimates of f and underestimates of the high expressor memory. Thus, cellular current 
provides a lower bound of the actual cellular memory for the high expression state.   

 
22B6.5. Cellular memory estimations for different gene circuits and inducer concentrations  
 
We applied the cellular current method to estimate the cellular memory of yeast cells carrying 
the PF gene circuit at [ATc]=10 ng/ml (Figure 4E) and [ATc]=5 ng/ml (Figure SX3XE), as well as 
for yeast cells carrying the NR gene circuit [9] at [ATc]=80 ng/ml (Figure SX3XF).  

PF cells grown in 5 ng/ml ATc were sorted into high and low yEGFP:ZeoR expressors. 
Memory fit using the 2 state model was estimated at τL=40 h and τH>1013 h. The cellular current 
model estimated memory at τL=43 h and τH>218 h. NR cells grown at 80 ng/ml ATc were 
similarly sorted, and had memory estimates from the 2 state model of τL=11 h and τH=12 h. The 
cellular current estimates were τL=14 h and τH=8 h. 
 
6B7. Fitness measurements  
 
23B7.1. Measuring the resuspension period for keeping PF cells in the exponential growth 
 
To determine the optimal timing for periodical cell resuspension, with the aim of keeping cells in 
the exponential growth phase, we started cultures of PF cells (0.05 x 106 / ml / 1ml of total 
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volume) in the fresh medium supplemented with 10 ng/ml of ATc (without Zeocin) and took cell 
count measurements using a NexCelom CelloMeter every 2-3 hours over a time period of 24 
hours (Figure SX7XA). We found that the initial lag phase lasted approximately 5h, followed by the 
exponential growth phase up to approximately 18h, after which cell population growth was 
reduced. Based on these data, the duration of exponential growth phase for PF cells in galactose-
containing media in the absence of Zeocin and ATc was estimated to be around 12 hours. 
 
24B7.2. Fitness measurements of PF cells maintained in exponential growth 
 
In experiments where fitness was measured in different conditions over the period of several 
days, cell cultures were started from fresh colonies, and the media were supplemented with 
appropriate concentrations of ATc where applicable. The cells were resuspended every 12h for at 
least 48 hours before applying Zeocin treatment, to keep them in exponential growth and to 
stabilize their growth rates and yEGFP::ZeoR expression distributions. The cultures were started 
with cell concentrations of 0.4-1 x 106 / ml (depending on ATc and Zeocin concentration, 1 ml of 
total volume) and were counted and resuspended in fresh media with identical composition every 
12h to keep them in exponential growth. Fitness for cells with no ATc induction was measured 
from earlier time points, since uninduced cells had little protection from Zeocin, and were 
potentially under strong evolutionary pressure. Fitness for cell populations with ATc induction 
was estimated over the last 6 time points to minimize the transient effects immediately after 
exposure to Zeocin. Growth rates were obtained by linear fits to the log transformed cell counts 
(Figure SX7XB-D, Table SX3X).   
 
7B8. Switching rate measurements based on the two state population-dynamics model 
 
A previously defined two-state population-dynamics model [24,25], with gene expression states 
corresponding to high and low yEGFP fluorescence, was used to estimate the switching rates of 
cells based on sorting experiments: 
 

HHHLH

LLHLL

NgfNrNN

NgfNrNN

+−=

++−=
&

&
. [49] 

 
where gL corresponds to the growth rate of low expressors grown, while gH corresponds to the 
growth rate of high expressors. Furthermore, cells in the low (L) state could switch (“rise”) into 
the high (H) state with rate r, while cells in the H state could switch (“fall”) into the L state with 
rate f. Initially, we assumed equal growth rates, gL = gH = g, but later revised the model to 
account for the growth retardation due to the “squelching effect” of rtTA [3,4]. Solving this 
system resulted in an analytical expression for the subpopulation ratio of low expressors to high 
expressors over time, R(t)=NL(t)/NH(t), which was fit to the experimentally measured 
subpopulation ratio, as described below. 
 
25B8.1. Estimating the non-genetic memory of high and low expressing cells by sorting bimodal 
cell populations 
 
Bimodal PF cell populations were separated by FACS into low and high expressor 
subpopulations and then monitored over several days together with the corresponding unsorted 
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PF cell populations as a control. Cells were resuspended every 12 hours and assessed by flow 
cytometry at different time points (see Figure SX8X).  

The subpopulation log-ratio, log10[NL(t)/NH(t)] obtained from the population-dynamic model 
was used to represent the prevalence of L and H cells, since the log-ratio can be represented as 
the difference of two log-transformed values. We assumed that unsorted cells were stationary 
(see Figure SX9XA) so that any differences in their distributions were due to systematic errors. 
Thus, the log-transformed subpopulation ratio for the unsorted population was used to estimate 
the systematic variation at each time point, defined by the equation 
 

( ) iUiUR εμ +=,10log , [50] 
 
where Uμ  is the stationary mean of log-ratios, εi is the experimental variation at the ith time 
point, and Ru,i is the subpopulation ratio measured at the ith time point for unsorted cells (U). The 
mean log-ratio is estimated as  
 

∑
=

=
n

i
iUU R

n 1
,10log1μ . [51] 

 
If the experimental error is systematic, with identical effects on both sorted and unsorted cells, 
then the mean number of cells at the ith time point is given by 
 

iiPiPR εμ += ,,10log , [52] 
 
where RP,i is the subpopulation ratio at the ith time point, and µP,i is the average log-ratio at the ith 
time point in the cell population of type P (i.e. low-sorted, high-sorted or unsorted populations). 
Rearranging [X52X] and substituting εi from [X50X] gives the “normalized” mean subpopulation ratio,  
 

UiUiPiP RR μμ +−= ,10,10, loglog . [53] 
 
The theoretical estimates of R=NL/NH  from [23] were fit simultaneously to all three time 

courses of the subpopulation ratios measured in the 3 cell population types (unsorted, low-sorted, 
and high-sorted taken from a single experiment). The 3 subpopulation ratio measurements were 
first normalized according to [X53X]. The only parameter within the model allowed to change was 
the starting subpopulation ratio, obtained from the experimental data. The error function used to 
estimate how appropriate the parameters were to model the data was defined as 

 
( ) ( )[ ]

UHLTotal

i
iPiPP

EEEE

E

++=

−=∑ 2
,10,10 logˆlog μμ

, [54] 

 
where μ̂  is given by the log-transformed analytical subpopulation ratio from [X53X], EP is the error 
associated with the cell population of type P, and the total error ETotal (which was minimized to 
obtain switching rates) is defined as the sum of errors for the low, high, and unsorted 
populations. This had the practical effect of attributing 1/3 of the error weighting to the unsorted 
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population, forcing all parameters to values that ensure the asymptotic convergence of all 
solutions to the subpopulation ratios of unsorted population. 

The parameters r, f were estimated individually from triplicate experiments, and averaged. 
Starting R(0) values were taken as the geometric mean of the starting ratios of modes, to ensure 
that populations with predominately high expressors are weighted equally to populations with 
predominantly low expressors. Estimated parameters included the switching rates r and f, as well 
as the starting ratios RL(0) and RH(0) of (L)ow to (H)igh expressors at the first time point. 
Growth was estimated separately for unsorted populations based on cell counts using a 
NexCelom Cellometer. We note that when estimating the ratios of (L)ow to (H)igh expressors, 
we first assumed equal growth rates for the mathematical model of growth). 
Minimizing [X54X] using Matlab’s fminsearch algorithm, while constraining the growth rates of 
high and low expressors to be equal, we obtained switching rates of r ≈ 1.25×10-2 h-1; f = 
7.1×10-3 h-1 for PF cells grown at 10 ng/ml ATc. The fit appeared to consistently underestimate r 
while overestimating f (Figure SX9XB). 
 
26B8.2. Using purified subpopulations of high-expressing PF cells to estimate cellular memory 
 
We took advantage of the strong non-genetic memory of the high expression state in PF cells and 
established a method to obtain purified populations of high expressing PF cells (>99% purity) 
following the seminal paper on lac operon bistability by Novick and Weiner [26]. Briefly, PF 
cells were first pre-induced to the bimodal expression state using ATc = 10 ng/ml (Figure 
SX10XA). Then we performed serial dilutions and prepared 80 tubes with a concentration of 
approximately 1 cell per 10 tubes (0.1 cell/ml). Cultures were grown from these isolated cell
periodically resuspending them in fresh medium with the same ATc = 10 ng/ml for 4 days. Since
a period of 4 days is shorter than the memory of high expression, but higher than the mem
low expression, the expectation was that subsequent cultures started from a single low expressor 
will have bimodal distribution while cultures started from a single high expressor sho
predominantly consist of high expressors. As expected, by day 4 we obtained two different types 
of cell populations, some of which indeed consisted more than 99% of high-expressing cells 
(Figure SX10XB).   

By periodically resuspending these cultures into fresh medium and monitoring their gene 
expression pattern by flow cytometry, we also estimated the non-genetic memory of high 
expressors as in the sorting experiments described in the main text. As expected, the populations 
that initially consisted almost entirely of high expressing cells eventually relaxed to the bimodal 
distribution over several days (Figure SX10XC). These results confirmed that the non-genetic 
memory of high expressors greatly exceeded the memory of low expression (see the main text).  
 
8B9. Ideal phenotypic switching rates 
 
27B9.1. Mutual dependence of switching rates and fitness affects optimal survival strategies  
 
Cells unable to sense environmental changes can maximize their fitness by stochastically 
transitioning between different phenotypes [27,28]. However, these switching rates must be 
reasonably in tune with the environment to have a strong benefit. Kussell and Leibler found that 
cells whose fitness was unaffected by switching would have ideal switching rates proportional to 
the rate at which the environment switched, and inversely proportional to the time spent in an 



environment [28]. For our two-state system, the corresponding ideal memories based on the 
Kussell-Leibler model are predicted to be 
 

( ) ( )

( ) ( )optimaloptimal
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=

τ

τ
, [55] 

 
where τL and τH are the memories of the low and high state cells, and Ttoxic and Tnormal are the 
average duration of the toxic and normal environments, respectively. 

Does this prediction change when switching rates and cellular fitness are mutually 
interdependent? In order to answer this question, we created a set of functions that reasonably 
approximated experimental rates at 0 and 2 mg/ml Zeocin (see Figure SX11XA and B). These rates 
followed experimental rates to maintain biological plausibility, but were not meant to be 
predictive. We then simulated cells switching in either a periodically oscillating or a randomly 
fluctuating environment. The first environmental switching rates were predicted to have optimal 
memories at 10 ng/ml ATc (see Figure SX11XC) and 100 ng/ml ATc(see Figure SX11XD). Next, we 
simulated environmental switching rates with long intervals in the toxic environment and short 
intervals in the normal environment (cells would be predicted to be most fit incubated in 
saturating ATc, see Figure SX11XE). Finally, cells were simulated in a purely toxic, constant 
environment (see Figure SX11XF). In contrast to the Kussell-Leibler predictions, these simulations 
suggest that cells with a fitness cost to the rate of switching will benefit more from limiting their 
switching rate than from having switching rates that mirror environmental rates.        

 
28B9.2. The “sweet spot” occurs when switching rates are less than growth rates 
 
We next asked whether the observed sweet spot was due to the ratio of switching rates, or 
whether memory was important. Using we scaled the switching rates by a constant k (r’=kr, 
f’=kf). As the switching rates became comparable to growth rates (at k=10), the sweet spot was 
dampened and disappeared at high switching rates (see Figure SX11XG). 
 
9B10. Gillespie simulations of cell populations maintained in exponential growth 
 
Gillespie simulations of PF cells were simulated using Matlab’s ssa (stochastic simulation 
algorithm) solver from the SimBiology toolkit. In addition to simulating chemical kinetics, cells 
divided at rates determined by rtTA toxicity. The time to cell division was simulated by a 
constitutively expressed “counter” protein driving cell cycle forward, in such a way that the 
mean division time mirrored those from experimental measurements, with a division time CV of 
~15%. To obtain a CV of ~15% for completely uninduced cells, cell division was defined to 
occur when the number of counter proteins reached 89, with cells on average starting with 45 
counter molecules. ATc-bound rtTA was assumed to repress cellular transcription (squelching 
effect) causing a fitness reduction. This was simulated by having rtTA bind to a constitutive 
protein responsible for driving the cell cycle counter (see Figure SX12X).   

Upon division free floating molecules and cell volumes were reapportioned between two 
cells according to a binomial distribution with equal probabilities (p=0.5) [29,30]. This 
represents a slightly more complicated form of the previously defined growth “electromotive 
force analogue” ([X41X]), which is given as  
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where ρ is the probability of reapportionment. When F≠ω , the reapportionment is unequal. The 
cellular current equation was derived with ρ defined as a delta function. 

Since cell division can imply an exponential increase in the number of simulations required, 
cells were made to die at rates comparable to their growth rates. 5000 cell populations starting 
from a single uninduced cell were simulated over 96 hours, with frequencies obtained by 
sampling yEGFP::ZeoR protein levels from the last 48 hours of cell simulations. 

PF cells were simulated with rates consistent with previous simulations of TetR systems [9], 
taking into account the differences between rtTA and TetR, and comprise lower ATc binding 
rates, lower DNA binding affinity, and a degradation half time of 20 minutes [31,32].  

Stochastic models were developed in Dizzy [33] (see SI Dizzy code), and then converted into 
a Matlab SimBiology model for cell population-level simulations. 
 
10B11. Tracking cells from micoscopic images obtained in a microfluidic device 
 
Brightfield and fluorescence images of dividing cells were obtained over 48 hours. We used 
custom tracking algorithms to track cells over 30 hours and obtain confirmatory statistics (see 
Figure SX12XC). We estimated the rise (r) and fall (f) rates by counting the number of cells that 
crossed a predefined threshold, divided by the time over which these crossings were observed 
and the number of cells above and below the threshold immediately before counting. Using a 
threshold boundary of 2000 arbitrary fluorescence units, we found that the ratio of low to high 
expressors was 1.27. The estimated rise and fall rates were r = 28.7×10-3 h-1 and 
f = 3.9×10-3 h-1, representing a 7-fold difference in switching rates, although the subpopulation 
ratio was approximately 5:4. In conclusion, this analysis confirmed that switching from the OFF 
state into the ON state occurred much more frequently than the reverse transition over the time 
period of observation, corroborating our cellular memory estimates from the main text.  
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Primer name Sequence (5’ -> 3’) 
Tetreg-AflII-f GCGCCTTAAGGCGCCACTTCTAAATAAGCGAATTTC 

CYC1-BamHI-r GCGCGGATCCCCCGAATTGATCCGGTAATTTAGTG 

T2-Down-f AGAGTCGACAAAGTCGAGTTTCTCGATCCCTATCAGTGATAG 

T2-Up-r CTATCACTGATAGGGATCGAGAAACTCGACTTTGTCGACTCTC 

Amp-AhdI-f GCCTGACTCCCCGTCGTGTAGATAACTACG 

HIS3-Add1-r AAGCAATAGTAGAAAAAAACAATGATATGGTGCACTCTCAGTAC 

HIS3-Add2-r CTTTCGATAAGTTTTTCCCACAGCAAAGCAATAGTAGAAAAAAAC 

HIS3-Add3-r ACGAGAATTAAGAAAAAGTCGTCATCTTTCGATAAGTTTTTCC 

HIS3-AfeI-r TCCTAGCGCTCACCAAGCTCTTAAAACGAGAATTAAGAAAAAGTCG 

Origin-PstI-f AAAGCTGCAGCATACGATATATATACATGTGTATATATG 

Origin-SacI-r GCGCGAGCTCCAGCTGGCGTAATAGCGAAGAGG 

VP16-XhoI-r GCGCCTCGAGTTACGATCCCCCACCGTACTCG 

Origin-AflII-r GCGCCTTAAGCAGCTGGCGTAATAGCGAAGAGG 

rtTA-BamHI2-f GCGCGGATCCATGTCTAGATTAGATAAAAGTAAAG 

FFF-Add-r GTCGAAATCGTCAAGAGCATCTGCAGGCAACATATCCAAATCAAAGTCATCCAAG 
GCGTCAGCTGGACCCCCACTTTCACATTTAAGTTG 

FFF-XhoI-r GCGCCTCGAGTTAACCTGGCAACATATCTAAATCAAAGTCATCTAATGCGTCGGC 
GGGTAGCATGTCTAGGTCGAAATCGTCAAGAGCA 

Backbone-r CGCGTTGGCCGATTCATTAATGC 

TRP-f ATGTCTGTTATTAATTTCACAGGTAGTTC 

TRP-r CTATTTCTTAGCATTTTTGACGAAATTTG 

Origin-middle-f CTATTAAAGAACGTGGACTCCAACGTCAAAG 

Second-tetO-f AGAGTCGACAAAGTCGAGTTTCTCGATCCC 

CYC1-r CATACAGAGCACATGCATGC 

GalSeqE-r TGAATAATTCTTCACCTTTAG 

HISSeq-r CGGTATTTCACACCGCATAGATCCGTCGAG 

HISEnd-f TTCCCTCCACCAAAGGTGTTCTTATG 

TADH-r CTGACCTACAGGAAAGAGTTACTCAAGAATAAG 

 
Table S1. Oligonucleotides used for cloning, sequencing and yeast strain validation.  
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Parameter PF [Eq. X3X] 
a 180 nM h−1 
b 3 nM−1 h−1 
C 7 [ATc] h−1 
δ ln(2)/0.33  h−1 
g 0.24 h−1 
h 1  h−1 
l 2.5 nM h−1 
n 2 
θ 34.4 nM 
Ω 1 

 
Table S2. Parameters describing PF dynamics based on equation [X3X]. 
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ATc 
(ng/ml)

Zeocin 
(mg/ml)

Fitness (h-1) 

0 0     0.2374 
1 0     0.2181 
2.5 0     0.2174 
5 0     0.2115 
10 0     0.1846 
20 0     0.1527 
0 0     0.2573 
0 0.25     0.2371 
0 0.5     0.2215 
0 1     0.1806 
0 2     0.0522 
0 2     0.0619 
1 2     0.1885 
2.5 2     0.1739 
5 2     0.1502 
10 2     0.1346 
20 2     0.1247 

 
Table S3. Experimentally measured growth rates of PF cell populations in various antibiotic and 
inducer concentrations. 
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Figure S1. Fluorescence histograms classified as unimodal (A) or bimodal (B & C).  
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Figure S2. Intersection of production and degradation terms for the PF model 
([X5X,X6X],parameters in table SX2X) at 1, 10, and 1000 ng/ml ATc are shown by circles in panels (A), 
(B), and (C), respectively. Green denotes stable states, red denotes the unstable states. The 
corresponding Fokker-Planck probability distributions are shown at 1, 10, and 1000 ng/ml ATc 
in panels (D), (E), and (F), respectively.  
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Figure S3. Transactivator (rtTA) expression histograms (A) and cellular memories (B) predicted 
using the Fokker-Planck equations and the Dynkin equation for the PF gene circuit [X9X,X12X]. (C) 
Cellular memories predicted using Kramers’ escape rate method. The rates used for these 
calculations are listed in Table SX2X. (D) Estimates (based on the cellular current) of cellular 
memories for high and low expressor PF cells as a function of ATc, assuming cell division rates 
independent of ATc. Memories are calculated from the relationships τH=NH/IH→L and τL=NL/IL→H 
where IH→L=IL→H=gθn(θ), where τ, N,θ, and I are the memory, number of cells, fluorescence 
threshold, and cellular currents of cells in the (H)igh or (L)ow expression states, respectively. 
The black dashed line shows the ATc levels where the sorting experiment was performed. 
Memories were also estimated by sorting for (E) PF cells at 5 ng/ml ATc and (F) NR cells at 80 
ng/ml ATc. 
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Figure S4. Workflow for calculating overall cell population fitness. Logarithmically binned flow 
cytometry data (A) is converted to its corresponding probability density function (B). The 
instantaneous fitness (C) is multiplied by the probability density function (B) to obtain the 
“instantaneous” contribution to the overall fitness as a function of fluorescence (D). The 
average of g2 is used to calculate the overall cell population fitness, gT (E). 
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Figure S5. (A) The positive regulation (PR) synthetic gene circuit, consisting of the 
constitutively expressed rtTA-MF transactivator (from the GPD promoter) that activates the 
yEGFP::zeoR reporter when bound by the ATc inducer. (B) The positive feedback (PFX) 
synthetic gene circuit with deleted yEGFP::zeoR coding region, but otherwise identical to the PF 
gene circuit. (C) Overall cell population fitness decreases both with rtTA expression (fitness of 
PF cell populations at 0 ng/ml ATc is greater than fitness of PR cell populations at 0 ng/ml), and 
with rtTA activation (fitness of PR cell populations at 0 ng/ml is greater than fitness of PR cell 
populations at 200 ng/ml ATc). (D,E) Two alternative fitness models were tested with 
dependences on total rtTA concentrations (D) and active and inactive rtTA concentrations (E). 
Both models capture the same essential feature (“sweet spot”) when memory is incorporated, 
but the model with dependence on active rtTA was most similar to the experimental data, 
consistent with experimental observations that ATc-bound rtTA has a strong contribution to 
fitness reduction. (F) Comparison of overall population-level fitness reduction in PF (Figure 2A) 
and PFX (Figure S5B) cells as a function of increasing ATc concentrations at 0 mg/ml Zeocin 
shows that that preventing metabolic costs of transcription and/or translation in the reporter 
gene is able to diminish the overall rtTA-related toxic effects in high expressor cells.  

     PTETREG rtTA-MF 

 ATc  
PFX 

  P TETREG   yEGFP::zeoR   P GPD    - MF   rtTA
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Figure S6. (A) Loewe additivity does not improve memoryless predictions, regardless of synergy 
or antagonism. (B) Fitness prediction based on realistic memory and Loewe additivity give 
similar results to those based on Bliss independence. Experimental results may suggest slight 
synergism between rtTA toxicity and Zeocin toxicity at ι=100. Experimental data points are 
shown by spheres, with purple spheres corresponding to 0 Zeocin, green spheres corresponding 
to 0 ATc, and red spheres corresponding to2 mg/ml Zeocin. 
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Figure S7. (A) Log-transformed cell counts for PF cells at 10 ng/ml ATc and 0 mg/ml Zeocin. 
Log-phase lasts somewhat longer than 12 hours. (B, C, D) Growth curves of cells resuspended 
every 12 hours in 0 mg/ml Zeocin over a range of ATc concentrations (B), 0 ng/ml ATc over a 
range of Zeocin concentrations (C), and 2 mg/ml zeocin over a range of ATc concentrations (D). 
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Figure S8. Experimental histograms for unsorted, low-sorted and high-sorted PF 
subpopulations grown in 10 ng/ml ATc. 
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Figure S9. (A) 42 unsorted PF cell populations as measured during 3 separate sorting 
experiments demonstrate stable steady state distributions when resuspended every 12 hours. (B) 
Expected relaxation to steady-state distributions based on population-dynamic models with 
UequalU growth rates at 10 ng/ml ATc [X49X]. Switching rates were estimated from [X54X] for PF 
strain with identical growth rates. The subpopulation ratio, R= NL/NH, is plotted as a function of 
time. Ignoring growth effects resulted in strongly distorted fits for PF sorting. 
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Figure S10. Serial dilution experiment for obtaining populations of PF cells grown from single 
cells. (A) Initial distribution of PF cells grown in 10 ng/ml ATc; (B) Populations of PF cells in 
different tubes after 4 days during the serial-dilution experiment. Populations 5 and 7 were 
highly enriched (>99%) in high expressing cells; (C) Monitoring Populations 5 and 7 (blue and 
red) and Population 2 (green, control bimodal population) demonstrated the strong memory of 
high expression, as long time was needed for the predominantly high expressing subpopulation 
switch to the bimodal state. 
 

100 101 102 103 104
0

100

200

300 Day 5

200

100 101 102 103 104
0

50

100

150 Day 6

300

100 101 102 103 104
0

75

150

225 Day 8Day 4 

300

100 101 102 103 104
0

75

150

225 Day 11



 
A B 

10
-2

10
0

10
2

0.05

0.1

0.15

0.2

0.25

ATc

F
itn

es
s 

(/
h)

 

 

g
L
(Z=0)

g
H

(Z=0)

g
L
(Z=2)

g
H

(Z=2)

10
-2

10
0

10
2

10
-4

10
-3

10
-2

10
-1

ATc

ra
te

 (
/h

)

 

 

Fall
Rise

 
C D 

10
-2

10
-1

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ATc (ng/ml)

F
itn

es
s 

(/
h)

T
toxic

  =24.4 h

T
normal

=4.8 h

 

 

τ
H

=T
toxic
2 , τ

L
=T

normal
2

Fluctuating environment
Oscillating environment

 
10

-2
10

-1
10

0
10

1
10

2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

ATc (ng/ml)
F

itn
es

s 
(/

h)

T
toxic

  =26.8 h

T
normal

=3.2 h

 

 

τ
H

=T
toxic
2 , τ

L
=T

normal
2

Fluctuating environment
Oscillating environment

 
E F 

10
-2

10
-1

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ATc (ng/ml)

F
itn

es
s 

(/
h)

T
toxic

  =100.0 h

T
normal

=10.0 h

 

 

Fluctuating environment
Oscillating environment

 
10

-2
10

-1
10

0
10

1
10

2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

ATc (ng/ml)

F
itn

es
s 

(/
h)

T
toxic

  =100.0 h

T
normal

=10.0 h

 

 

Fluctuating environment
Oscillating environment

 
G  

0

1

2 0 5 10 15 20

0.05

0.1

0.15

0.2

0.25
 

ATc (ng/ml)Zeocin (mg/ml)

 

F
itn

es
s 

(/
h)

k=100

k=101

k=102

 
 
Figure S11. Heuristic functions were fit to experimental fitness data at 0 and 2 mg/ml Zeocin (A) 
as well as switching  rates (B). These fit functions were used to simulate cell growth when the 
environment switched between 0 and 2 mg/ml Zeocin. The red circles correspond to simulated 
environments with optimal phenotypic switching rates at 10 ng/ml ATc(C), 100 ng/ml ATc (D), 
long-lasting toxic environments (E), and a constant toxic environment (F). Predicted ideal 
switching rates do not agree with simulated ideal switching rates. (G) Actual switching rates 
scaled by the factor k=1, 10, 100. As switching rates reach parity with growth rates (k=10), the 
sharp peak defining the sweet spot disappears.
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Figure S12. Schematic representation of stochastic simulations of cell population growth and 
live cell imaging. (A) Intracellular chemical kinetics are simulated using the Gillespie algorithm. 
Cell cycle proteins drive “counter” molecules that initiate cell division after a threshold is 
reached. rtTA affects cell growth by sequestering molecules that would be used to drive the cell 
cycle forward. After division, molecules are reapportioned between the mother and daughter cell 
based on the binomial probability distribution. (B) Simulations of PF cells incorporating 
stochastic biochemical transitions and cell division. Simulations are “gated” so that cells with 
60-70 cell counters are used to create histograms. Histograms are created from log-binning 
yEGFP::ZeoR protein concentrations, to make them consistent with flow cytometry 
measurements. (C) Time course tracking of live cell fluorescence by microscopy in a microfluidic 
chamber is consistent with a model where cells predominantly switch to the high expressor state, 
but predominantly reproduce in the low expressor state.  
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