TEXT S2 — DERIVATION OF EQUATIONS
The Relationship Between Featured-Based and Conventional Sensitivities

A system of ordinary differential equations (ODE) involving one dynamical variable and its conventional
sensitivity are defined in the following way:

y=y(tk)
dy(t; k)
vk = ok

where y is a dynamical variable, the dot notation of y signifies a time derivative, and S'y,k is the sensitivity

of y with respect to the parameter k. Solving these equations yields the trajectories over time of the
dynamical variable and of its sensitivity, respectively,.

Here we consider two time-based features t;,;q, and tg,iccn, as Well as their respective sensitivities. In
the context of extrinsice cell death for example, we can let y represent cPARP, then the definition of
taelay 1S given by the time at which cPARP has reached a predefined threshold y,presnoia-

y(tdelay) = Ythreshold (Eq Sl)

Note that 4.4y is defined implicitly. The switching time tg,,;c, is given by the inverse of the slope of
the trajectory at tgeqy -
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tswitch = (a_jt/ tdol > (Eq 82)
elay

If the dynamical variable y represents number of cPARP (as we use in EARM), then the units of the right
hand side are of time. The sensitivities of these two time-based features are given by the following two
expressions:

$ atdelay
tdelay;k — ok

S'. — atswitch
tswitcwk — ok

In order to obtain the sensitivity of ¢4.,,,,, we take the full derivative of Equation S1 with respect to the
parameter k and evaluate the expression at t = tge4y, NOting that t,4.;4, has an implicit dependence on k
and that the left hand side is constant (from the definition of ¢4, in EQ. S1) so must evaluate to O.
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Nevertheless, this expression can be rearranged to yield the sensitivity of t;,4y
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ey _ _a_y| <6_y| ) Eq. S3
k kle= tdelay t

Equation S3 has an appealing geometric interpretation. The three fractions of Equation S3 are related to
the three legs of a triangle in the y vs. t plot (Figure) in the following way: the slope of the hypotenuse is
given by the slope of the trajectory at t = tge14y, Which is simply the time derivative of the dynamical
variable evaluated at t = t4,,4,. But the slope itself is the ratio of the length of the vertical leg to the
length of the horizontal leg, which are given respectively by the conventional sensitivity of y with respect
to k and the feature-based sensitivity.
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Figure. Geometrical interpretation of the sensitivity of t4.qy.

To obtain the sensitivity of t,,i:cn, We simply take the partial derivative with respect to k as there is no
implicit dependence on tg,,;¢cn-
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Sensitivities Propagate Variance in Initial Protein Concentrations to Variance in Pathway
Output

A population of heterogenous cells with varying protein content can be modeled as a collection of
systems of ODEs, each instantiation with unique initial protein concentrations representing an
individual cell. The following system of ODEs represents a single cell.

i = g(t i} Uk {vo,})
yi(0) = ¢y

The dynamical variables y; represent the levels of proteins, protein complexes and species with
post-translational modifications. Initial protein concentrations vary from cell to cell but have been
measured and are well-described by a multivariate log normal distribution.

p({¥o,:}) Iiz1 d(log o) =
/De;]gl exp [— % (logco — (log CO,k))(UI?,l)_l(log cos — (log Co,l))] [TiL; d(logco,) Eq.S4

The measured mean log levels of the i*”* protein is given by (log ¢, ;), and the variable a,gl denotes

the measured covariances of the log concentrations. The population behavior for variable y; is easy
to write down formally.

PN = 8 (i) = 9i(t:{co)))) = ;" TIs d(log vo,)p({co, )6 (ri®) = 9:(t: {co,}) ) Ea. S5
But because the ODEs are nonlinear, a closed form for Equation S5 is generally impossible and one
must settle for moment expansions.

Taylor expanding y; and performing an average with Equation S4 yields the following:

dyi 1 0%y,

————(logcy i) + = logcy i log ¢
a(logco,j)( B0, 2 alogco‘jalogco‘k< 8 o, 108 Cox)

;) = yi(t; {(logco ;)}) +

The second moment is given by
Vi (®O)y;©) — i)Wy (@)
Evaluating its Taylor expansion to second order yields the expression

o %; (log co i logco) — (log g logcy) = e Ties i
6(log CO,k) a(log Co,z) ' ' ' ' 6(log CO,k) ' a(log CO,l)

The last expression is the covariance (or variance, if i = j) of the model outputs.
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