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1. DISCUSSION

1.1. Mathematical Model 

· Negative feedback on E2F

Negative feedback on E2F has been shown to occur through several possible channels. E2F can activate the expression of Cyclin A1


[ ADDIN EN.CITE ]
, which can bind to E2F:DP1 protein complexes and phosphorylate DP12


[ ADDIN EN.CITE ,3]
, thereby disrupting the DNA binding capacity of E2F4


[ ADDIN EN.CITE ,5]
. Likewise, E2F activates transcription of Skp26[]
 which is a part of the SCF ubiquitin-ligase that in turn targets E2F for proteasomal degradation7


[ ADDIN EN.CITE ]
. E2F is also targeted for proteasomal-mediated degradation through binding to the Arf tumor suppressor8


[ ADDIN EN.CITE ,9,10,11,12]
 , which is a well-studied target of E2F13


[ ADDIN EN.CITE ,14]
 and MYC15[]
. An additional source of negative feedback comes from the micro RNA of the miR-17-92 locus. E2F can transcriptionally activate this locus and miRNA in turn target expression of E2F by downregulating transcription16


[ ADDIN EN.CITE ,17,18]
. This same locus has also been shown to be regulated by MYC19[]
. Here, we lump all of these and possibly other factors that deactivate E2F activity into a single term, CYCA that targets degradation of E2F protein (Table S2).

· Repression of E2F

Previous work indicated a biphasic response of E2F to increasing MYC20[]
. Our previous analysis of the model (data not shown) implies that an additional source of repression downstream of MYC but upstream of E2F is required to generate this biphasic dose-dependency. Although miRNA and ARF are E2F repressors that are regulated by MYC, we found that their biphasic dynamics were not compatible with biphasic E2F. Thus, we implement E2F repression through (R), which is an unknown intermediate downstream of MYC (Table S2).

1.2. Parameter biases in PFB module 

· PFB in adaptation

An examination of the parameter distributions for PFB revealed that diminished E2F mRNA synthesis rate (kE2Fm) and the increased protein degradation rate (dE2Fp) were the only prominent and distinct biases for adaptation (Figure 3B). Why might there be a preference for increased E2F protein degradation? It can be shown that the response time of a species with constitutive synthesis is inversely proportional to its half-life. Thus, the increase in dE2Fp (i.e., reduced dE2Fp-1) might indicate a strong preference for fast E2F protein expression preceding negative feedback. For adaptation, the median value of dE2Fp (~0.32/h) corresponds to a protein half-life on the order of 2 h which may explain why endogenous E2F has such a short half-life ~1-2 h. An alternative explanation for the decrease in kE2Fm and increased dE2Fp is that E2F levels must be restrained in order to allow NFB to correct E2F to near-basal levels. Very high synthesis rates would lead to a high steady-state responses that counteracts resetting of E2F and biologically speaking, proper shut-down of E2F target genes involved in DNA synthesis. This is consistent with numerical simulations showing that increasing the value of kE2Fm and dE2Fp-1 disturbed the extent of E2F correction (+kE2Fm/dE2Fp-1, Figure S3D).

· PFB in biphasic response

The only distinct shift in PFB for biphasic behavior was an increase in E2F protein degradation (dE2Fp, Figure S2A). Akin to the case for adaption, increase in this parameter may aid biphasic behavior by decreasing the steady-state levels of E2F and aid in achieving near-basal levels at high MYC inputs. This is supported by numerical simulations where increasing the value of dE2Fp-1 (i.e. decreasing dE2Fp) perturbed the correction of E2F levels (+dE2Fp-1,  Figure S2D).
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Table S2. Equations for single E2F and duplicated E2F models 

	Single E2F model
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	Duplicated E2F model
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Table S3. Model parameters

	Parameter
	Base Value 
	Range
	Description
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3. MATERIALS AND METHODS

3.1. Parameter search algorithm 


To examine how these different dynamics can be reconciled in a common network, we developed a search algorithm to identify parameters that support each. To simplify the analysis, we allowed synthesis and degradation rates to vary (Table S3) while fixing a subset of parameters unlikely to be subject to external control in the different biological contexts examined here. For one iteration of the algorithm, values of free parameters are initialized randomly from a log-uniform distribution spanning at least three orders of magnitude. Each parameter range was determined by restricting them to a physiologically relevant range (e.g. mRNA and protein half-lives) and/or were adjusted so that they included a previously established base value for each parameter20


[ ADDIN EN.CITE ,22]
. We simulated time courses of several network components in response to serum (to examine bistability or adaptation) or MYC (to examine biphasic dose response). Each response is scored by an objective function that measures the corresponding temporal (adaptive) or dose (hysteretic and biphasic) response (Figure S1A). 

For each round of simulation, the score was compared against a pre-defined minimum threshold. If the score exceeded the threshold, the corresponding parameter set was defined as a solution for the particular function. Otherwise, the parameter set was permutated (“mutated”) in a probabilistic fashion before another round of simulation and evaluation (see pseudo-code below). The probability (prob) of mutating any given parameter within a set is 0.40; Mutations were created by drawing from the normal distribution ~N(0,1) and adding this to the logged value of the current parameter. If the score improved within the last consecutive 100 mutations, the parameter set was permitted to engage subsequent rounds of mutation and scoring. This procedure was repeated until the score exceeded the threshold. If the score did not improve after 100 mutations, however, the iteration was terminated without a solution. Typically, 10,000 iterations of the algorithm were performed for each dynamic task (single and dual).

This approach to parameter searching possesses two desirable characteristics. By defining solutions as parameter sets which exceed an objective function score, the algorithm reports sub-optimal (but nevertheless valid) solutions that are often discarded in place of higher scoring ones in more traditional evolutionary approaches (i.e. genetic algorithm). At the same time, the algorithm can permute parameters in a probabilistic fashion and retain parameter sets with the potential to climb a fitness landscape towards a solution. This is distinct from ‘brute-force’ random scanning methods, which are impractical for probing high-dimensional spaces. In particular, in order to survey P points of each parameter dimension D, one would be required to test exactly PD parameter sets. In the context of our model, such a search would easily become infeasible: If P=3 (i.e., search three points in the 3-log range for each parameter) then this requires 319 = 109 or one billion distinct parameter sets. 

· Pseudo-code for a parameter search iteration 

threshold <- minimum objective score

isFinished <- false

iteration <- 0

topScore <- 0

M <- randomly initialize parameter set

S <- Score M

while isFinished is false and iteration < 100    

        Mmutated <- Mutate M

        Smutated <- Score Mmutated        

  if S < Smutated 

       
   M <- Mmutated

               topScore <- Smutated



   iteration <- 0

        else

         iteration <- iteration + 1

        endif

  if S > threshold 

        
isFinished <- true


  endif

endwhile

return M
· Pseudo-code for Mutate 

bounds <- bounding values for parameters

prob <- mutation probability 

sigma <- normal distribution standard deviation 

for each parameter p in vector 

    valid <- false

r <- random ~Uniform(0 1) 

   if r < prob 

while valid is false

ptemp <- p + ~Normal(0,sigma)   

if ptemp is within bounds

   

p <- ptemp




valid <- true

endif


     endwhile

   end                

endfor 

3.2. Definitions 

· Tension 

We define tension between two dynamic tasks. Consider a network with n parameters (
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The solution space for each single task (
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 will be a function of the particular network topology and the range of values of each parameter will be subject to boundary conditions representing physiologically plausible range. 

Implementations of multi-objective, stochastic optimization have often used an objective defined by the weighted-sum of individual objectives23


[ ADDIN EN.CITE ]
 which we have also employed here according to:
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where the weights (ω) in this study are equal to unity. The results of this approach to identifying dual solutions are denoted “DualAdditive” in Figure S2 and Figure S3. We also defined a objective function assuming independent contributions from each single task objective denoted “DualProduct ”:
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As an independent validation of this approach, we performed a search for dual solutions using the set of single solutions for either task as a starting point in place of randomly initialized parameters. In this way, single task objectives are considered sequentially (denoted “Dualsingle task IC”, Figure S2 and Figure S3), mimicking the sequential addition of tasks onto a network. In all cases where a composite objective is employed, each individual objective must exceed the required threshold score in order to be deemed a “dual”. Each implementation of the composite objective gave similar distributions of solution parameters. 
Several challenges are faced when trying to compare solution spaces including the high-dimensionality of the system, the interdependent nature of parameters, and the possibility of solution space that is disjoint rather than simply connected. Thus, as a first approximation, we assume that each parameter contributes independently and make no assumptions regarding its distribution in parameter space. Thus, we calculate the median of each parameter value for the solution set and define the tension (T) between two solutions spaces associated with two tasks (i and j) as:
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where n is the number of parameters , and ωp is a weighting factor that can be included if there is a priori knowledge regarding the relative importance of the parameter on system dynamics. In this report, we assign equal weights to all parameters such that ωp=1/n.

· Kullback-Leibler divergence
For each parameter dimension, the distribution of the solutions selected for a single dynamics (hysteretic, biphasic, or adaptive) is fitted with a nonparametric kernel-smoothing distribution. The Kullback-Leibler (KL) divergence 24[]
 between the solution distributions generating two distinct network dynamics is calculated using the fitted probability density functions.
The KL divergence between p with respect to q is defined as:
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· Accessibility 

One measure of robustness is the fraction of parameters surveyed that generate a dynamic, providing a measure of the effective “size” of the solution space. Our parameter search algorithm is able to perform a local, random search in parameter space and is biased towards those that increase the objective score. Intuitively, a “smooth” objective landscape will allow the algorithm to converge to a maximum more rapidly and easily than a “rugged” landscape with many local maxima/minima. 

The results of our search algorithm can be used to infer the size and nature of the landscape surrounding the solution space for a particular task: Under equivalent conditions (i.e. network topology, algorithm parameters, total iterations, and model parameters), the number of solutions can be used to calculate the “accessibility” of a solution space, which in the case of dual solutions is:
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where Nij is the number of dual solutions that occur within the solutions for each single task (i and j) and Ni and Nj are the total number of single task solutions. 

· Resiliency 

Another measure of robustness concerns the ability of an individual solution to maintain its performance in the face of parameter perturbation. In this report we tested solutions from each task (single and dual) that were in close proximity to the median value for each respective solution space. Selecting solutions based upon different criteria (random, highest scoring, lowest scoring) had no significant impact on the results. For each solution, each of its n parameters was perturbed by selecting a new value drawn from a normal distribution centered on xporiginal to get xpperturbed by using the “Mutate” algorithm defined above. Total parameter variation for a perturbed parameter set is defined as 
[image: image88.wmf]å

=

÷

÷

ø

ö

ç

ç

è

æ

=

n

p

original

p

perturbed

p

x

x

K

1

log

. A perturbed parameter set for a particular task (i) is resilient if it retains at least 10% of the original parameter objective function score. That is, 
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Varying the threshold between 0.5 and 0.01 did not significantly impact the change in resiliency between single and dual solutions. The resilient fraction reported in Figures 2E, 3E, and 4E of the main text represent the results of 10,000 perturbations to each individual solution. 
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