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Detailed criteria for priming and tolerance in the Metropolis searching algorithm  

We used the Metropolis algorithm [1] to search for parameter values for which the system 

exhibits priming or tolerance effects. Table S1 gives the criteria for identifying priming or 

tolerance parameter sets. In general, both priming and tolerance require the system to generate a 

dose-response curve having the following qualitative features: small signal (LD) gives small 

response and large signal (HD) gives large response; priming requires that LD+HD LPS gives a 

larger response than does a single HD LPS (positive control); tolerance requires that HD+HD 

LPS gives lower response than does a single HD LPS (positive control). Parameter sets that 

satisfy these conditions (either for priming or for tolerance) are called “good” sets. 

Two-stage Metropolis search for parameter sets that exhibit priming or tolerance 

It is impractical to perform a brute force search for priming/tolerance samples in a high 

dimensional parameter space. Figure S1A illustrates an alternative two-stage strategy. In the first 

stage, we searched widely over the parameter space with some bias to stay in a good parameter 

region and some chance to wander off in search of another good region. Then K-means 

Clustering and Principal Component Analysis was applied to the samples of good parameter sets 

generated in stage 1 to see if the data form several separate clusters. Each potential cluster 

provides a random seed for a second round of Metropolis searching. This time the search is 

restricted to stay within a good region, in order to search each region thoroughly and to obtain a 

representative sample of good parameter sets.  

To apply the Metropolis Algorithm, we relate the current problem of searching in the parameter 

space to sampling the partition function of a pseudo-statistical physics system. The bias 

controlling the probability of wandering out of a good region ( 10,   1k k    ) is defined by a 

Boltzmann-type expression 1( )k ke
   

 where β represents an “inverse temperature” variable. 

There exists a trade-off value of β for the Metropolis search in stage I. If β is too large, the search 

will stay in a local minimum and fail to explore the parameter space thoroughly. If β is too small, 

the search cannot yield enough samples for the clustering analysis. Through trial and error, we 

found that β = 6 is a good value for the stage I Metropolis search, which gives ρ = 0.0025. Note 

that the priming region is very small compared to the whole parameter space. Therefore, 

although ρ = 0.0025 is very small, it still guarantees that the system has sufficient probability to 

leave the good regions and thoroughly search the parameter space. 

In the above procedure, the score function k plays the role of “energy” in a physical system. In 

general it can be a continuous function, and its gradient can guide the Metropolis search to the 

favorable region. For the current problem, the score function we use essentially behaves as a 

two-state system. Therefore we assign the value of k to be 0 or 1.  

We chose to use the Metropolis method for the first stage, but other methods will probably work 

equally well, e.g. genetic algorithm [2] and the methods used by Ma et al. [3] and Yao et al. [4]. 



Figure S1B provides the result of the two-stage Metropolis search. In the left panel the priming 

sets obtained from the first stage form three main clusters under the K-means Clustering. For 

visualization purpose the clusters in the high-dimensional parameter space are plotted using the 

first two components of Principal Component Analysis. Using the Khachiyan Algorithm [5], we 

calculated the minimal volume ellipsoid to embrace 99% of the parameter sets of each region. As 

shown in the right panel of Figure 1B which calculates the distance of a parameter set to the 

center of each bounding ellipsoid, it turns out that a single ellipsoid embraces clusters 1 and 2, 

thus forming one single region (we call it “Region I”). This result is independently confirmed 

with the following Metropolis simulation with ρ = 0: a trajectory starting from one cluster can 

generate parameter sets belonging to the other cluster. On the other hand, cluster 3 forms a 

separate region (Region II). Notice that a small portion of samples locate within both ellipsoids, 

indicating these two ellipsoids (regions) are barely connected. We found that Region II is 

actually (part of) the mirror image of Region I with the roles of x1 and x2 exchanged, reflecting 

the symmetry of the 3-node system. Therefore, the results discussed below and in the main text 

focus on the motifs found in Region I.  

About 10
6
 output samples are generated out of 10

8
 Metropolis steps in stage 2. Of these 10

6
 

samples, some appear to be biologically irrelevant and are removed from the sample set. For 

example, in some cases 3( )x t
 
increases to a much higher level after the HD stimulation is 

removed, this would be a pathological response of the system. Other samples show 

unrealistically large sensitivity to initial conditions, i.e., although LD induced only small changes 

in x1, x2 and x3 (less than 10%), the system still exhibited priming effect. If priming were due to 

such small differences, then (in our opinion) the response would not be robust to the stochastic 

fluctuation expected in real systems [6-9]. 

While the results reported in the main text are from one trajectory result, the procedure was 

repeated several times with random initial start of the searching in stage 1. Results analyzed from 

different trajectories agree with each other, confirming the convergence of our two-stage 

Metropolis searching procedure.  

Statistical method used to identify backbone motifs 

A backbone motif is defined to be the simplest motif (the fewest number of non-zero ωji’s) that is 

shared by most of the priming/tolerance network structures in a particular region. A backbone 

motif must be able to generate a priming/tolerance effect by itself. Identification of backbone 

motifs helps to define the core mechanism of priming or tolerance. Figure S3 shows the 

statistical method used to obtain the backbone motifs for the pathway synergy group.  

Step 1: calculate the mean of each interaction coefficient ωji among all samples of the group, and 

map the mean values into a topological matrix τji (see Material and methods in the main text for 

the method of parameter discretization). 



Step 2: for each ωji calculate its coefficient of variation (CV = standard deviation divided by 

|mean|). The value of CV measures the dispersion of the data along each parameter dimension. A 

large value of CV suggests that a link is not essential and should not be part of the backbone 

motif. Only links with CV < CutOff should be part of a backbone motif. For CV > CutOff, τji = 0 

in the backbone motif.  

Step 2.1: determine the optimal value of CutOff. As CutOff decreases, the corresponding motif 

becomes simpler and therefore more samples contain this motif. However, the motif is a 

backbone motif only if it gives priming by itself. Therefore, there exists an optimal CutOff value 

so that the corresponding motif has the simplest topology that is still able to generate priming for 

some specific parameter sets. In this case the optimal CutOff = 0.54 (see the right figure in Step 

2.1 of Supplement Figure 3).  

Step 2.2: compare each dimension in the CV matrix to this optimal CutOff value, and obtain the 

corresponding backbone motif. 

Figure S4 shows 2D histograms of parameter distributions under each priming mechanism (PS, 

SD and AI). These histograms clearly highlight the corresponding backbone motifs. For example, 

for the 2D histogram shown in Supplemental Figure 4A, the PS data form clusters where both x1 

and x2 activate x3 (2
nd

 figure), and x3 feeds back negatively on x2 (4
th

 figure). Also x2 shows 

significant auto-activation but x1 does not (data spread out horizontally in the 5
th

 figure); this is 

in line with the backbone motif where x1 auto-regulation is not essential for priming. Similarly, 

x1 exerts strong inhibition on x2, whereas the regulation from x2 to x1 can be either negative, zero 

or positive (the 3
rd

 figure), in line with the backbone motif where this regulation is missing. In 

addition, the 1
st
 figure indicates that x1 should change on a much faster time-scale than x2. This is 

a dynamical requirement of pathway synergy in addition to the topological features as illustrated 

by the backbone motif. 

Motif density is more robust than frequency to variation in the topological cut-off 

To map from the continuous space of interaction coefficients ωji to the discrete space of network 

topologies τji, one must choose a cut-off value 0 for mapping ωji’s to −1, 0 or +1. We have 

chosen this cut-off 0 (somewhat arbitrarily) to be 0.1. The simplest way to order these 

topologies from “more robust” to “less robust” is in terms of the number of parameter sets that 

map into each topology, i.e., the frequency of each topology in the total data set. However, we 

find that topology-frequency is sensitive to the choice of the cut-off value for ωji. A better 

measure is topology density (Figure S6), defined as follows. The total volume of the 9-

dimensional space of interaction coefficients is 2
9
, because each ωji can continuously vary over 

[−1, 1]. For a motif with m non-zero τji’s, the volume of its subspace is 0(1 ) (0.9)m m  .  The 

density of the motif is defined as the number of samples corresponding to this motif divided by 

the volume of its subspace. 



In Supplemental Figure 6 we compared the two ways of ordering the topologies using the SD 

data set as an example. The figure shows how the rank of robustness of each topology changes 

due to 10%, 30% and 50% positive or negative variations from the original cut-off 0 0.1  . A 

point on the figure with coordinate (x, y) means that the rank of a given topology is x with 

0 0.1  , but y with the varied 0 . Scattering from the diagonal indicates changing of the ranking 

due to 0 variation. The density-sorted rank (top panel) is less sensitive than the frequency-sorted 

one (lower panel) to the change of 0 . 

2D parameter correlations demonstrate how parameter compensation affects topological 

robustness 

We calculated the correlation matrix of each priming mechanism from the corresponding 

samples. As can be seen from Figure S8A, some parameters show strong anti-correlations. For a 

pair of anti-correlated parameters, increasing one can be compensated by decreasing the other (or 

negatively increasing the other if the regulation is inhibition), so the overall dynamics remains 

(approximately) the same. This is because in the modeling equations,  
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the activation of species xj is dependent on the overall net input Wj. As Wj sums inputs from all 

regulating nodes, a change in one parameter (e.g. ωj1) can be compensated by a change in a 

second parameter (e.g. ωj2) if the sum stays the same. Such parameter compensation expands the 

region of parameter space where priming or tolerance is observed and therefore affects the 

robustness of the model. 

For example, the left panel of Supplemental Figure 8B shows that the feedback from x3 to x2 

strongly anti-correlated with x2’s auto-regulation among SD datasets. With 23 = 0, the absolute 

value of 22 needs to be also small (the Null region in the right panel of Figure 8B), otherwise 

priming is abolished. However, since 23 and 22 are anti-correlated, the effect of an increasing 

22 can be canceled off by increasing ω23, thus expand the priming region in the parameter space 

(the upper left and bottom right regions of the right panel of Figure S8B). 
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