Table S2. The top 5 single-gene knockouts and over-expressions that minimize the agronomic properties of the tomato fruit based on improve only one objective.

Gene	Gene Annotation	Efficiency (%) [†]	RIL
Vitamin C			
LE33G09	Not found	-1.91	28
LE33H21	Chloroplast inner membrane import protein Tic22, putative	-1.77	28
LE9K02	Not found	-1.27	28
LE14J12	40S Ribosomal protein S3a-like	-0.75	28
LE17I11	Potential GTPase activation protein	-0.73	28
LE14J14	SRFR1, protein complex scaffold	-19.31	28
LE14B20	Clathrin adaptor complexes medium subunit family protein	-18.28	28
LE27C02	Phytoene dehydrogenase, chloroplastic/chromoplastic	-14.78	28
LE15D07	Polynucleotide kinase- 3'-phosphatase, putative	-14.35	28
LE3H15	Non-cell-autonomous protein pathway1, plasmodesmal receptor	-13.84	28
Fructose an	d glucose		
LE25A03	Ribosomal protein S27-like protein	-7.66	24
LE33H21	Chloroplast inner membrane import protein Tic22, putative	-5.33	24
LE20D08	Cyclic nucleotide-gated calmodulin-binding ion channel	-5.19	24
LE25M02	Auxin response factor 8	-3.63	24
LE9K02	Histone H3.2	-2.98	24
LE13M10	Ribosomal protein L30e	-12.73	24
LE1K08	Not found	-10.46	24
LE16L04	Ureide permease, putative	-9.27	24
LE23D07	Transcription factor-related	-6.34	24
LE1B05	Integral membrane Yip1 family protein	-6.83	24

Malic and citric acids

LE13F23	Chloroplast phosphate transporter precursor	-34.10	159
LE8C21	Tubulin-specific chaperone C-related	-31.50	159
LE18G02	Heat shock protein, putative	-30.91	159
LE2C24	ATAB2; RNA binding	-27.77	159
LE26N09	6-Phosphogluconolactonase-like protein	-26.09	159
LE15D07	Polynucleotide kinase- 3'-phosphatase, putative	-42.18	159
LE12J12	Chloroplast methionine sulfoxide reductase B1 precursor	-40.03	159
LE29L04	ER33 protein	-40.45	159
LE20K20	Cation efflux protein/ zinc transporter, putative	-34.99	159
LE27I24	Katanin P80 subunit, putative	-31.69	159

Notice that the first five genes is the top 5 of single-gene knockouts (light rows) and the following five is the top 5 in over-expression (dark rows).

[†] Efficiencies were selected in the RIL where the perturbation maximizes the fitness.