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S1 Details of the computational model

S1.1 Algorithm structure

We employ an Euler scheme with fixed time-step dt = 0.01L0/v0. (In initial simulations,
testing smaller time-steps did not change results.) At the beginning of each simulation,
both actin and myosin filaments are assigned random positions xj and xm,k, respectively;
additionally, a random orientation εj = ±1 is assigned to actin filaments. At this stage,
no crosslinks between actin filaments exist and all myosin filaments are unbound from the
actin filaments.

In each subsequent time-step, any two actin filaments whose projections on the x-axis
overlap can establish a stable crosslink at their plus-ends with a probability ρ(|xj−xk|)dt =
ρ0 exp(−|xj−xk|/δ)dt/δ that depends on the distance of the respective plus-end positions,
xj and xk. Subsequent crosslinking results in the formation of ‘actin filament clusters’ that
consist of many actin filaments with aligned plus-ends. If two actin filaments belonging
to two small clusters establish a new crosslink, these two clusters then merge into a single
cluster. The x-coordinate of this new cluster is taken as the weighted average of the
respective x-coordinates of the two clusters.

In our simulations, an idealized myosin filament with midpoint position x is assumed
to have one actin binding site at either end located at x±Lm/2, where Lm is the length of
a myosin filament. Each of these two binding sites can bind to exactly one actin filament
in a polarity-specific manner, see figure 3C. (The binding site at x ± Lm/2 binds to an
actin filament of orientation ε = ±1, respectively.) During a time-step, a free binding
site may bind to an actin filament in the range of this binding site with probability kondt.
An occupied myosin binding site may unbind from its actin filament either spontaneously
with probability koffdt, or, by forced unbinding, if the depolymerizing minus-end of the
actin filament retracts past the binding site.

For the simulations that include actin filament turn-over in figure 5, the number of
“actin catastrophies” during a time-step was determined as a Poisson random variable



S2

with mean kNa, where Na is the total number of actin filaments in the bundle. A corre-
sponding number of actin filaments was randomly selected and removed from the system.
Actin filament severing as employed for figure 6 was similarly implemented.

Furthermore, we employ a continuous description of actin polymerization assuming
a constant plus-end polymerization speed v0. In a more microscopic description not
considered here, this would correspond to a plus-end elongation by four monomers during
each time-step (using typical values L0 ≈ 1µm for the length of a two-stranded actin
filament and a = 5.5 nm for the size of a monomer [37]).

Figure S1. Local force balances determine velocities. Motion of actin filaments
parallel to the bundle axis is characterized by respective lab-frame velocities v0

j (of the
filament monomers). For actin filaments (red and blue) grafted at their plus-end in a
crosslinking band (green), these velocities are offset from the velocity vc of the
crosslinking band by εjv0, where εj = ±1 denotes filament orientation. Moving actin
and myosin filaments are subject to friction with the cytosol; black arrows denote the
respective friction forces. The mutual interaction of actin and myosin filaments is
modeled by a linear force-velocity relation. As detailed in section S1.3, this relation can
be also be represented by an active force fm of actin-myosin interaction acting on the
myosin filament (magenta arrow) as well as a protein friction force −γm,a(vm − vj)
associated with the interaction (red arrow). Corresponding counter forces act on the
respective actin track. Force balance for each crosslinked actin cluster, as well as for
each individual myosin filament allows us to self-consistently determine the velocities of
all actin clusters and myosin filaments, respectively.

Finally, the individual speeds of actin clusters and myosin filaments inside the bundle
are determined in a self-consistent manner by a balance of forces at each actin cluster and
myosin filament, respectively. We consider cytosolic friction forces for both actin filaments
(γaLjv

0
j ) and myosin filaments (γmLmvm,j), as well as a linear force-velocity relation for

the interaction of bound pairs of actin and myosin filaments, see also SI text. Actin
polymerization at the plus-end is taken into account as an offset εjv0 between the velocity
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of the actin plus-end vj = ẋj and the velocity v0
j = vj−εjv0 by which the individual actin

monomers move with respect to the cytosol. The corresponding positions of actin and
myosin filaments are updated accordingly in each time-step.

S1.2 Actin filament length

For figures 2, 3, and 4, we assumed a monodisperse distribution for the length of actin
filaments, Lj = L0 for all j. An equal polymerization and depolymerization speed v0 at
the plus- and the minus-end, respectively, ensures that filament length does not change in
time. For figure 4, the length of individual filaments was also taken to be static, but was
drawn from a unimodular length distribution p(L) with mean 〈L〉 =

∫∞
0
dLLp(L) = L0

and variance 〈L2〉 − L2
0 = ν2L2

0. For p(L), we chose a log-normal distribution with scale
parameter σ =

√
ln(1 + ν2) and location parameter µ = −σ2/2

p(L) =
1

Lσ
√

2π
exp

[
−(ln(L/L0)− µ)2

2σ2

]
. (S1)

Finally, for figure 6, the length of individual filaments changes dynamically with time, see
section S1.4.

S1.3 Linear force-velocity relation of actin-myosin interaction

We assume a linear force-velocity relation for the active walking of a myosin filament that
is attached to an actin filament. If the actin filament (say of orientation ε = +1) is held
fixed with zero velocity (v0

a = 0), this force-velocity relation reads

γ̃vm = fm + fext,m, (S2)

where vm is the velocity of the myosin filament, fext,m an external force acting on the
myosin filament and fm denotes an active myosin force (that also equals the myosin stall
force). The actin filament is subject to an opposite force −fm. The coefficient of propor-
tionality γ̃ = γmLm + γm,a represent a friction coefficient that combines a contribution
stemming from a cytosolic friction force γmLmvm for myosin motion relative to the cy-
tosol, and a contribution that effectively describes protein friction of the actin-myosin
interaction, γm,a(vm − va), which we assume is proportional to the relative velocity of
the myosin with respect to the actin. We use γa = γm and γm,a = 10γaL0. The above
force-velocity relation can thus be rephrased in equivalent form as a force balance

γmLmvm + γm,a(vm − v0
a) = fm + fext,m. (S3)

This formulation generalizes in a straightforward manner to the case of a moving actin
filament. If fext,a denotes an external force acting on the actin filament of length La, we
have an analogous force balance for the actin filament

γaLav
0
a − γm,a(vm − v0

a) = −fm + fext,a. (S4)
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In the context of our actin bundle simulations, the external force fext,a is actually zero for
free actin filaments. For polymerizing actin filaments grafted in a Z-band, however, fext,a

is non-zero and represents the counter force of the actin polymerization force. Given fext,a

and fext,m = 0, we can self-consistently solve for the myosin and actin velocities, vm and
va, respectively, see figure S2. In the absence of external forces, the active myosin force fm
causes the myosin filament to move towards the actin plus-end, while the actin filament
itself is pushed backward as a result of a counter-acting force fm. A strong, backward-
directed external force acting on the actin filament, fext,a < −γa/γm,afm, pushes both the
actin filament and the myosin filament backwards, va, vm < 0, despite the fact that the
myosin filament advances relative to the actin filament, vm − va > 0.

Figure S2. Force-velocity relation of actin-myosin interaction. The walking of a
myosin filament (magenta) with respect to an actin filament (blue) is modeled by a
linear force velocity relation, see section S1.3. A backward directed force fext,a acting on
the actin filament can push both the actin and the myosin filament backward (in the
−x-direction). Such forces arise as counter forces of actin polymerization forces in our
simulations. In this case, the myosin filament continues to advance with respect to the
actin filament as indicated by a positive velocity difference vm − va > 0.

S1.4 Actin filament length control by severing

We present a simple model for the length control of polymerizing actin filaments, which
is employed in a modified version of our computational model presented in figure 6. This
simple model idealizes a more sophisticated model discussed in [48–50]. We consider a
pool of Na filaments, which for simplicity are assumed to elongate at their plus-end with
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a constant polymerization speed v0, while their minus-ends are stable (possibly due to
minus-end capping). Consequently, the length of a filament grows in time, L̇j = v0.
Additionally, severing agents can bind to a filament with equal probability all along the
filament length and cut the filament at the binding position, see figure 6A. Subsequently,
the minus-end facing fragment of the cut filament is assumed to depolymerize completely
(possibly due to the fact that it consists mainly of ADP-actin), whereas the plus-end facing
fragment remains (possibly recruiting a new cap for its minus-end). Let α dL denote the
rate by which a severing agent binds to a short length segment dL of a filament. Then
the total probability that during a short time-interval dt a filament of length L is cut
somewhere along its length is αLdt, i.e. the overall scission probability is proportional
to filament length. A simulation of this mechanism with Na = 2000 actin filament results
in unimodular distribution of filament length at steady-state, see figure 6B.

In a mean-field description, the filament length distribution p(L) is found to obey a
master equation

∂

∂t
p(L, t) = −v0

∂

∂L
p(L, t)− αLp(L, t) + α

∫ ∞
L

dl p(l, t). (S5)

The first term on the right hand side is a convective term that arises from the polymeriza-
tion speed and describes a flux in probability space due to the elongation of actin filaments
by polymerization. The second term is the rate at which filaments of length L are cut
into smaller filaments by the severing agent, which decreases the number of filaments of
length L. The third term finally represents the rate of accrual of stable, plus-end facing
fragments of size L from the scission of longer filaments. The probability that a cut will
occur at a distance L from the plus-end of a long filament of length l is α. Equating
the left-hand side of equation (S5) to zero, we can solve for the the steady-state length
distribution p0(L) and find

p0(L) = αL/v0 exp[−αL2/(2v0)]. (S6)

The mean filament length 〈L〉 is determined by a competition of the cutting rate α and
the polymerization speed v0, whereas the normalized length variability ν is independent
of both α and v0

〈L〉 =

√
πv0

2α
, 〈L2〉 − 〈L〉2 = ν2〈L〉2, ν =

√
(4/π)− 1 ≈ 0.52. (S7)

S2 Model parameters and sensitivity

Table S1 lists reference parameters used for the figures (unless stated otherwise). The
parameters marked with an asterisk (L0, v0, γa) set a characteristic length scale (L0), time-
scale (L0/v0), and force-scale (γaL0v0), respectively. All other parameters are defined in
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symbol meaning value range
Na number of actin filaments 2000 250-4000
Nm number of myosin filaments 1000 250-2000
L0 mean actin filament length 1 (∗) n.a.
Lm myosin filament length 0.5 (L0) 0.1-1 a

Lsys system size 40 (L0) 20-80
v0 actin polymerization speed 1 (∗) n.a.
γa cytosolic friction coefficient for actin 1 (∗) n.a.
γm cytosolic friction coefficient for myosin 1 (γa) 0-10
γma friction coefficient for actin-myosin interaction 10 (γaL0v0) 2.5-100
fm active myosin force 1 (γaL0v0) 0-9.5 b

kon actin-myosin binding rate 1 (v0/L0) 0.05-10
koff actin-myosin unbinding rate 1 (v0/L0) 0-10
δ range of actin crosslinking 0.05 (L0) 0.01-0.1
ρ0 base rate of actin crosslinking 1 (v0/L0) 0.01-1

aSystem size was adapted as Lsys = 16(2L0 + Lm) to be an integer multiple of the expected
sarcomere size.

bA simulation time of t = 250 was chosen to account for an increased time-scale of sarcomeric
ordering.

Table S1. Reference parameters used in simulations.

a dimensionless manner relative to these scales. We independently varied parameters and
determined (non-exclusive) ranges for which robust sarcomeric pattern formation occurred
(characterized by a mean sarcomeric order parameter 〈S〉 > 0.9; simulation time t = 50).

S3 Periodic and static boundary conditions

The simulations in silicio acto-myosin bundles presented in the main text employ periodic
boundary conditions. An example kymograph of actin cluster formation and coalescence
for periodic boundary conditions is shown in figure S3A. For periodic boundary condi-
tions, a small drift of the entire bundle may occur at steady state as a result of a small
imbalance in the number of actin filaments of the two orientations. In real nascent my-
ofibrils, the boundary conditions for pattern formation are defined by integrin mediated
anchorage at the two terminal ends of the myofibril. These focal complexes locally orga-
nize actin polarity. To mimick this situation, we ran simulation, where the terminal ends
of the bundle are represented by non-moving actin half-clusters of organized polarity, see
figure S3B. Without proper boundary conditions, sarcomeric ordering is impaired in our
simulations.
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Figure S3. Changing boundary conditions. A. Kymograph of actin cluster
formation and coalescence in the presence of myosin for the simulation shown in figure 3
of the main text. This simulation employed periodic boundary conditions. B.
Kymograph of actin cluster formation and coalescence in a simulated acto-myosin
bundle as in panel A, but for static boundary conditions. Static boundary conditions are
realized by inserting two actin half-clusters at the two bundle ends whose positions are
fixed throughout the simulation, x1 = 0 and x2 = Lsys, by imposing suitable constraining
forces. Each half-cluster comprises N = 50 actin filaments of specified polarity at t = 0.
This mimics bundles that are grafted by focal adhesions at their terminal ends. The
color scheme encodes filament number in actin clusters as shown in the color bar.

S4 Reversible crosslinking of actin filaments

Prompted by the experimentally observed stability of I-Z-I complexes, we assumed in the
main text that actin filaments become irreversible crosslinked at their plus-ends to form
actin clusters. We now relax this assumption, allowing for dissociation of single actin
filaments from a crosslinked actin cluster with a finite rate ρoff . We find that robust
sarcomeric pattern formation persists provided the effective binding rate ρ/δ exceeds the
unbinding rate ρoff , see the phase diagram in Fig. S4.
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Figure S4. Sarcomeric ordering for reversible actin crosslinking. We re-ran
simulations with the standard parameter set (and fm = 0), but now allowed for the
dissociation of single actin filaments from a crosslinked actin cluster with a rate ρoff to
mimic the reversible crosslinking of actin filaments. Shown is a phase diagram of
sarcomeric ordering as a function of the binding rate ρ0 and the unbinding rate ρoff . (To
classify order, we used the criterion S > 0.9 for the mean structure factor S averaged
over n = 100 simulations.) The ordering is affected by the reversibility of the
crosslinking only when the unbinding rate is large compared to the binding rate.

S5 Myosins crosslink actin clusters

In our model, bipolar myosin filaments can mechanically link neighboring actin clusters
by binding to one actin filament from each cluster, respectively. These linker myosin
mediate an effective interaction force between the two clusters: While myosin tends to
walk towards actin plus-ends, thus pulling the two clusters closer together as in the sliding
filament model of sarcomere contractions, actin treadmilling together with acto-myosin
friction mediates an effective repulsion. For a sufficiently high density of actin filaments,
the net repulsion force between the two clusters scales with the total number n of linker
myosins, (γm,av0 − fm)n. Figure S5A shows the number of myosin filaments linking two
neighboring actin clusters as a function of the separation distance ∆x between cluster cen-
ters in simulations with variable actin filament length; this dependence is non-monotonic.
Intuitively, this can be understood as follows: For small separation distances, only a small
number of myosin filaments happen to be enclosed between two clusters. For large sepa-
ration distances, however, the number of long actin filaments that can possible engage in
a myosin-mediated mechanical link is small. In the following, we will make this reasoning
more quantitative. The expected total number of myosin filaments fully enclosed by two
cluster centers can be approximated by cm(∆x − Lm), where cm = Nm/Lsys is the den-
sity of myosin filaments in the bundle and ∆x > Lm the separation distance of the two
clusters. Out of this total number of myosin filaments between the two clusters, only a
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certain fraction will actually bind to two actin filaments at a given time. We can estimate
this fraction of linker myosin filaments by formulating a mean-field theory. For this, we
consider an idealized scenario of two static actin half-clusters separated by a distance
∆x, each of which comprises a number N of actin filaments whose individual lengths are
distributed according to some length distribution, p(L), see figure S5B. We characterize
the myosin filaments enclosed between the two cluster centers by four different concen-
tration fields of their midpoint positions, according to whether they are not bound to
any actin filament [c0(x)], bound to an actin filament from either the left or right cluster
only [cL(x), cR(x), respectively], or, if they are true linker myosins that are bound to
actin filaments from both the left and the right cluster [c2(x)]. The dynamics of these
concentration fields is governed by convection due to the actin conveyor belt with speed
vm = (γmav0−fm)/(γma+γm), as well as by exchange terms ∆∗ due to binding/unbinding
kinetics and forced unbinding of myosins that have reached the depolymerizing minus-end
of an actin filament

ċL = −vm∇cL −∆L2 −∆L0,

ċR = +vm∇cR −∆R2 −∆R0,

ċ0 = + ∆L0 + ∆R0,

ċ2 = + ∆L2 + ∆R2,

(S8)

where the exchange terms read

∆L0 = koffcL − konΦ(xL)Nc0 + vm
p(xL)

Φ(xL)
cL,

∆R0 = koffcR − konΦ(xR)Nc0 + vm
p(xR)

Φ(xR)
cR,

∆L2 = −koffc2 + konΦ(xR)NcL,

∆R2 = −koffc2 + konΦ(xL)NcR.

(S9)

Here, xL = x − Lm/2, xR = ∆x − x − Lm/2, and Φ(x) =
∫∞
x
dx′ p(x′) is the cumulative

distribution function of actin filament lengths that counts how many filaments have sizes
greater than x. The exchange rate ∆L0 characterizes the exchange between the pool of
myosin filaments exclusively attached to an actin filament from the left cluster and the
pool of free myosin filaments that are not bound to any actin filament: Spontaneous
unbinding occurs occurs at a rate koffcL(x), while the rate of binding of free myosin
filaments with center position x to an actin filament from the left cluster is proportional
to the number Φ(xL)N of actin filaments that are long enough to extend to position xL,
where xL is the position of the left binding site of these myosin filaments. The latter
rate thus reads konΦ(xL)Nc0(x). Finally, the third term accounts for forced unbinding of
myosin filaments: once a myosin reaches the depolymerizing minus end of its actin track, it
‘falls off’ the filament to which it was bound. Forced unbinding of myosin filaments occurs
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with a rate vm[p(xL)/Φ(xL)]cL that is proportional to the local proportion p(xL)/Φ(xL)
of actin filaments of length L = xL among those with a length larger than xL. The other
exchange rates are derived similarly. Provided none of the actin filaments extends over
the entire cluster distance, myosins are confined to the region between the clusters and a
steady state evolves. At steady state, we find

c2(x) ∼ konN

koff

F+ exp

[
konN

vm
F− +

F−
F+

(
koff

vm
+G1

)
−G2

]
(S10)

Here, we used short-hand notation F± = (1/2)[Φ(x+Lm/2)±Φ(∆x−x−Lm/2)] and G± =
(1/2)[p(x+Lm/2)/Φ(x+Lm/2)±p(∆x−x−Lm/2)/Φ(∆x−x−Lm/2)]. Figure S5B shows
the analytical solution from eq. (S10), revealing the formation of a myosin band in the
midzone between the two actin clusters at steady state. Interestingly, this steady state is
characterized by a cyclic flux of myosin filaments, see figure S5B: Myosins bound to a blue
actin filament are actively transported to the left until they detach either spontaneously
or because they have been convected by actin treadmilling to the minus-end of their actin
track. Free myosins on the left-side of the two cluster system are more likely to bind to a
red filament due the higher local prevalence of these filaments. Once bound to a red actin
filament, these myosins are transported to the right by actin treadmilling. This cyclic flux
implies a violation of detailed balance and underpins the active nature of the underlying
processes. In fact, the steady-state analytical solution from eq. (S10) also describes the
transient behavior in our simulations of acto-myosin bundles, see figure S5A.
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Figure S5. Myosins crosslink actin clusters. A. Myosin filaments mechanically
link neighboring actin clusters by binding to one actin filament from each cluster,
respectively. The plots show that in simulations of an acto-myosin bundle with variable
actin filament length, the number of these linker myosins depends on the distance ∆x
between actin clusters in a non-monotonic way (gray dots). Also shown is an analytical
result for the number of linker myosin derived for a pair of static actin clusters at steady
state (red), assuming that the total number of myosins enclosed by the two cluster
centers scales as cm(∆x− Lm) where cm = Nm/Lsys is the density of myosin filaments in
the bundle (red dashed curve). Parameters as in figure 4 for different values of the
length variability parameter, ν = 0, 0.1, 0.3; simulation time, t < 10. For the mean field
theory, we assume N = 100 actin filament per half-cluster. B. For the analytical theory,
we consider an idealized scenario with two static actin half-clusters (with a certain
length distribution of actin filaments) as well as a number of myosin filaments enclosed
between the two cluster centers, see section S5. Myosin filaments can be either bound to
one actin filament from each cluster (no motion due to force balance), be bound to an
actin filament from one cluster only (myosin is convected by actin treadmilling), or be
unbound. Using a mean field description, we can compute the fractions of myosins in
the different binding states at steady state. This steady state is characterized by a cyclic
flux of myosin filaments between the different binding states, see main text. Parameters:
Actin filament number per half-cluster, N = 5 (for illustration purposes); cluster
spacing, ∆x = 2.5; actin length variability parameter, ν = 0.3; myosin binding rates kon

and koff as in table S1.


