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Text S1

1 ODE description of the agent-based model

Alternative methodologies for studying agent-based model dynamics.

In the paper, we considered an agent-based model where individuals can only
interact with their nearest neighbors, i.e. interactions are spatially restricted.
In the past, attempts have been made to describe spatial systems of this nature
with ordinary differential equations (ODEs), using pair approximation methods
[2, 11, 9, 10, 1]. We implemented those methods but found that this does
not provide a sufficiently good description of the outcomes and the dynamics.
The dynamics tended to fall somewhere between the outcome observed in the
mass-action ODE (that is, the ODE describing the system where mass-action
rules apply over the whole domain) and the true spatial dynamics observed
in the simulations of the agent-based model. In fact, in many cases the pair
approximation only provided a correction to a mass-action description, failing
to describe the dynamics of a spatially-restricted system. More details about
the accuracy of the pair approximation method will be provided in a subsequent
paper [12]. Hence, this method was not used to study the spatial system and
will not be further discussed. Instead, we obtained a full understanding of
the spatial system through a combination of extensive numerical simulation, as
described in the text, and analytical methods described here.

Another method which employs ODEs to describe spatially extended systems
was proposed by [6, 7]. There, a stochastic metapopulation model was consid-
ered based on the Nicholson-Bailey and (unsaturated) Lotka-Volterra systems
for natural enemies. The equations for the averaged values of the prey and
predator contain a covariance term, and a moment closure procedure was used
to approximate this term in the limit of very large migration rates (under the
assumption of global migration dynamics). The effect of spatial structures was
then studied for these systems. Our system is different from those of [6, 7]
because it contains saturated prey growth, and thus possesses a natural stable
equilibrium, thus making the role of spatial dynamics very different. The sys-
tem in the present paper is also different in another respect. Refs. [6, 7] report
that the results of the large migration rate approximation hold even in the case
of moderate and small migration rates. For our system unfortunately this is
not the case. Extensive simulations showed that the dynamics of metapopula-
tions changes dramatically depending on the relative magnitude of migration
rates. The results described in this paper do not fall under the umbrella of
“large migration rate” limit. For this reason, we did not implement the analytic
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methodology of [6, 7] to study spatial dynamics. Below we present an ODE
description which we used for a stochastic mass-action system.

A mass-action ODE description. Let us turn off the spatial restrictions
in the agent-based model, and allow each reproducing cell to attempt to place
its offspring in a randomly chosen site anywhere in the grid. Reproduction is
successful if the spot that was picked was empty. The same type of rule applies
to infection events whereby an infected cell can in principle infect a target cell
anywhere in the grid. The non-spatial system can be well described by ODEs,
which are given as follows:

dS

dt
= RS(1− S + I

K
)− BSI

K
, (1)

dI

dt
=

BSI

K
−AI (2)

where S denotes the number of susceptible hosts and I denotes the number
of pathogen-infected hosts. Uninfected hosts divide with a rate R, and this
growth is density-dependent, limited by the carrying capacity K. When an
infected host is encountered by a susceptible one, infection occurs with a rate
B. Infected hosts die with a rate A. This is a variant of the saturated Lotka-
Volterra predator-prey model. In order to derive this system from the stochastic
process, let us denote by φi,j(t) the probability that at time t, there are i infected
and j uninfected hosts in the system. To derive the equations for expected
numbers of infected and uninfected hosts, we consider the probability rates of
various events. In infinitesimal time-interval, ∆t , starting from state (i, j), the
following changes can happen:

• An uninfected host can reproduce with probability R(1 − (i + j)/K)∆t,
which contains the probability rate R for a given uninfected host to repro-
duce, times the probability that a randomly chosen spot will be empty,
1− (i+ j)/K.

• An infected host can die with probability A∆t, where A is the probability
of death.

• An infected host can pass infection to an uninfected host. For a given in-
fected host this happens with probability B i

K∆t, where B is the infection
rate and i/K is the probability to find an uninfected host by randomly
placing infection in one of the grid-spots.

Under these assumptions, the equations for averages can be derived, which are
given by

d〈i〉/dt = R(〈i〉 − 〈i2 + ij〉/K)−B〈ij〉/K, (3)

d〈j〉/dt = B〈ij〉/K −A〈j〉, (4)

where the angular brackets denote the expected values. The above equations
involve the second moments, and as with most nonlinear stochastic processes,
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the system is not closed. However, if we simply decouple the equations by
replacing 〈i2〉 → 〈i〉2 and 〈ij〉 → 〈i〉〈j〉, and denote S = 〈i〉, I = 〈j〉, we obtain
the non-spatial ODEs, equations (1-2) of the main text, which are the same as
equations (1-2) above.

As an alternative approach, we also considered a higher-order moment clo-
sure method, which results in a system of 5 ODEs that contain higher corre-
lations [8, 5]. We have checked numerically the mass-action system behavior
against the predictions of the simple ODEs, as well as the larger, 5-equation
system. We found remarkable correspondence with equations (1-2), which did
not warrant the usage of the more complicated system.

System (1-2) is characterized by two equilibria. In the trivial case, the
host population persists at carrying capacity, while the pathogen population
is extinct, i.e. S(0) = K, I(0) = 0. Alternatively, the pathogen establishes a
successful infection, and this equilibrium is described by S(1) = AK/B, I(1) =
RK(B − A)/B(R + B). The pathogen can establish a successful infection if
its basic reproductive ratio, R0, is greater than one, where R0 = B/A. The
approach to the coexistence equilibrium can be either monotonic, or can involve
damped oscillations. Oscillations are observed if the basic reproductive ratio of

the pathogen lies above the following threshold: R0 > 1
2 [1 +

√
A(A+R)

A ]. Note
that pathogen-mediated extinction of the host population is not possible, as
this system is deterministic. However, if the equilibrium number of susceptible
host cells is less than one, or if oscillations drive the number of susceptible
hosts below one, extinction is expected to occur in a corresponding stochastic
system (see below). This system has been used to describe the outcomes of the
non-spatial agent-based model in figure 1 of the main text.

2 One-dimensional stochastic metapopulation mod-

eling

To ensure that our findings are not dependent on one particular modeling ap-
proach, we compare the results obtained from the agent-based model to those
derived from a metapopulation model.

A metapopulation model is a different way to analyze dynamics in a spatial
setting. It consists of a collection of n local patches. To set up the stochastic
dynamics, we first write down a deterministic analogue of our model. It is given
by the following system of ODEs:

Ṡi = rSi

(

1− Si + Ii
k

)

− βSiIi
k

+
mS

2
(Si−1 − 2Si + Si+1), (5)

İi =
βSiIi
k

− aIi +
mI

2
(Ii−1 − 2Ii + Ii+1), 1 < i < n, (6)

where r is the division rate of target cells, β is the infection rate, a is the death
rate of infected cells, and k is the carrying capacity of one patch. We assumed
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that the patches are arranged in a 1-dimensional linear array, and both target
cells and infected cells can migrate to the neighboring patches to the left and to
the right of a given patch with migration rates given by mS and mI respectively.
To define the boundary conditions, we set

Ṡ1 = rS1

(

1− S1 + I1
k

)

− βS1I1
k

+
mS

2
(−S1 + S2), (7)

İ1 =
βS1I1

k
− aI1 +

mI

2
(−I1 + I2), (8)

Ṡn = rSn

(

1− Sn + In
k

)

− βSnIn
k

+
mS

2
(Sn−1 − Sn), (9)

İn =
βSnIn

k
− aIn +

mI

2
(In−1 − In), (10)

which means that populations do not migrate away from the ends of the linear
chain of patches.

To proceed with the definition of the stochastic metapopulation model, we
adopt the so-called Gillespie algorithm [3, 4]. The simulation proceeds as a
sequence of time-steps. At each time-step, let us denote the local numbers of

susceptible and infected cells as S
(n)
i , I

(n)
i . The different terms in system of

equation (5-6) define the relative probability weights of different events that
could happen at the next update. Let us form the sum

Σ(n) =
n
∑

i=1

(

rS
(n)
i

(

1− S
(n)
i + I

(n)
i

k

)

+
βS

(n)
i I

(n)
i

k
+ aI

(n)
i +mSSi +mIIi

)

.

Then the probability that at patch i, an infected cell will die is given by

aI
(n)
i /Σ(n),

the probability that at patch i, an infection event will take place is given by

βS
(n)
i I

(n)
i /Σ(n),

the probability that a target cell will migrate from patch i to patch i+1 is given
by

(mS/2)S
(n)
i /Σ(n),

and so on. Guided by these probabilities, we pick the next event and update
the system accordingly. For example, if the next event is a death of an infected

cell in patch i, we take I
(n+1)
i = I

(n)
i − 1, and keep the rest of the variables the

same. If the next event is an infection event in patch i, we take I
(n+1)
i = I

(n)
i +1,

S
(n+1)
i = S

(n)
i − 1, and keep the rest of the variables the same. If the event is a

migration of a target cell from patch i to patch i+1, we take S
(n+1)
i = S

(n)
i −1,

S
(n+1)
i+1 = S

(n)
i+1 + 1. Finally, we determine the length of the time-step between

state (n+ 1) and state (n) from the exponential distribution with the constant

Σ(n): P (τ) = Σ(n)e−Σ(n)τ .
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A description of possible system outcomes in the metapopulation model is
given in figure 9 of the main text. Here we note that although the topology
of the phase space in the metapopulation and in the agent-based models is the
same, and the outcomes that are observed are very similar, there are certain
features of the metapopulation model that are different from the agent-based
model. In particular, in the coexistence region (region MC), the dynamics of
the metapopulation can proceed according to several different patterns. It is
possible that local extinction occurs initially as the infected population starts
spreading through space. During this initial spread, a small number of infected
cells move into a space filled with susceptible target cells that exist close to
carrying capacity; the ensuing dynamics result in target cell extinction. This
occurs because of oscillatory dynamics which are promoted by a large initial
number of target cells in the patch. When the infected cell wave catches up with
the target cell wave and the two waves travel together, however, the situation
becomes different: the patches into which the infected cells migrate are not
filled with target cells close to carrying capacity anymore. Instead the target
cells are present at significantly lower levels, and such initial conditions favor
more stable dynamics with lower amplitude oscillations that are more likely
to lead to persistence. This eventually gives rise to most patches containing
persisting populations. Alternatively, if the virus is weaker, local populations
already persist during the initial spread of the virus through space, leading to
the absence of any traveling waves and the immediate persistence of most local
populations.

A summary of all the outcomes of the metapopulation model (figure 9 of the
main text) is provided below. They are based on the local equilibrium value
of target cells, S(1), and infected cells, I(1), as well as the wave height, H,
calculated by means of PDE analysis, see main text.

• If I(1) < 1 (above and to the left of the black line), pathogen extinction,
(outcomes MD and ME) is observed. Otherwise, the following outcomes
can occur.

• Outcome MA (extinction of both populations without traveling waves) is
observed if S(1) < 1 (below the white line) and H < 1 (to the left of the
green line).

• Outcomes MB or MB1 (traveling waves) are observed if S(1) < 1 (below
the white line, Figure 1c) and H > 1 (to the right of the green line).

• Outcome MC (coexistence) is observed if S(1) > 1 (above the white line
and below the black line).

Note, however, that the conditions S(1) < 1 and I(1) < 1 are only approximate.
In the Gillespie simulations, population extinction tends to occur when the
number of individuals approaches three instead of one, which is where the white
line in Figure 9 of the main text was drawn, for the sake of clarity. Further
note that these results depend on the assumption that the PDE provides a
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good deterministic description of the metapopulation dynamics. Calculations
[12] indicate that this is true if mS < 5r/12.

3 Derivation of the initial growth-laws of infec-

tion

In this section we focus on the initial growth patterns exhibited by the agent-
based model, as well as the in vitro system. It turns out that some approximate
growth laws of infection can be derived based on first principles. Let us study
the initial propagation of infection, and assume that the uninfected cells do not
divide in the time-scale of interest.

The growth of a plaque. First, we assume that the virus spreads outward
as a plaque, and does not leave uninfected cells behind. Let us denote by A the
area of the circular plaque. The growth-law of the plaque in a two-dimensional
culture is then

Ȧ = γ
√
A, (11)

because the rate of new infections is proportional to the circumference of the
plaque, and that in turn is proportional to the square root of A. The coefficient
γ in this empirical model is proportional to the infectivity of the virus. The
solution of this equation is given by

A =

(

γt

2

)2

, (12)

and the radius of the plaque is r(t) = γt/(2π).
Denote by z the distance from the center of the plague, and ρ(z) the density

of infected cells. The infected cells die at the rate a, and thus the density of
cells decays exponentially in time, with the rate a. Let us suppose that the
infection is introduced at time t = 0. A location at point with coordinate z gets
infected at time tz = 2πz/γ. If the current time is t, a location with coordinate
z has been infected for the duration of time, t− 2πz/γ. Therefore, the density
of infection at that point at time t is

ρ(z) = e−a(t−2
√

πz/γ),

To obtain the total number of cells, we integrate over the plaque,

y(t) =

∫ 2π

0

∫ γt/(2
√

π)

0

ρ(z)z dz dϕ =
γ2

4π

e−at − 1 + at

a2
,

such that for small values of at, the plaque grows quadratically in time, y(t) ∼ t2,
and for large values of at we observe a linear growth, y(t) ∼ t.

This analysis can be generalized to 3D:

y(t) ∝ 2(1− at− e−at) + (at)2

a3
.
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Here, for small values of at we have a cubic growth, y(t) ∼ t3, and for large at
we have a quadratic growth law, y(t) ∼ t2.

Disperse growth phenotype. Next, we consider a different mode of infec-
tion spread, where the wave of infection leaves uninfected cells behind. Let us
denote by ρS and ρI the local densities of uninfected and infected cells, respec-
tively. At dynamic equilibrium, ρS and ρI remain spatially uniform inside the
infected region. They satisfy the local equations,

ρ̇S = L(ρS , ρI)ρS − βρSρI , (13)

ρ̇I = βρSρI − aρI , (14)

where the reproduction rate L(ρs, ρI) is proportional to the number of unoccu-
pied spots in the neighborhood of a given cell, which in turn is proportional to
1−ρI−ρS , yielding the logistic growth law for ρS . Inside the region of infection,

these densities assume their equilibrium values, ρ
(1)
S , ρ

(1)
I . The total number of

infected cells however will grow because at the edge of the infected region, the
equilibrium is not reached, and new infections continue to happen. This hap-
pens proportionally to the number of infected cells at the edge. The area of the
infected region satisfies equation (11), and the total number of infected cells is

given by Aρ
(1)
I . This quantity grows as a square of t, see equation (12).

4 The fitting procedure

In the main text we present the result of a fitting procedure which shows that our
model can closely reproduce the behavior of the in vitro system. Here we outline
the details of the fitting procedure. The experimentally obtained time-series of
the number of infected cells were compared with the genetic algorithm model. In
order to find the model parameters, we ran the agent-based model on a 200x200
grid, starting from a specified initial condition (where the entire grid was initially
filled with uninfected cells, and Ni infected cells were placed in the middle at
day 7, with (a) Nc = 81 and (b) Nc = 3 for the ring structure and the disperse
phenotype respectively. The dynamics with different parameters were simulated
50,000 times. For each individual simulation, the log10 of the parameters of the
model were taken randomly from a uniform distribution between −4 and 0 (in
other words, the parameters belong to the range [10−4, 1]). The parameters thus
varied were: the infection probability, B, the death probability of infected cells,
A, and the linear division probability of the uninfected cells, R. The time-step
of the simulation was fixed at 4.2× 10−2 and 5.5× 10−2 days for the two cases.

For each parameter combination, the simulation was performed 100 times,
and the average growth-curve compared with the experimental time-series by
means of the least squares procedure. The best fitting model for each of the
two cases is presented in the paper.
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