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Figure 1. The toy chemical reaction network used in this example: circles denote chemical species and
arrows denote reactions.

Supporting Text S1

A toy example of the computation of chemical potentials by
MinOver with loop correction

Supporting text for “A Scalable Algorithm to Explore the Gibbs energy Landscape of Genome-scale Metabolic
Networks”

Daniele De Martino1, Matteo Figliuzzi1, Andrea De Martino1,2,?,†, Enzo Marinari1,?

1 Dipartimento di Fisica, Sapienza Università di Roma, p.le A. Moro 2, 00185 Roma, Italy
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Note : A computer code implementing the algorithms to compute chemical potentials and identify
and remove infeasible loops is downloadable http://chimera.roma1.infn.it/SYSBIO/

We consider the simple reaction network in Fig. 1. By mass-balance, u = w = v1 +v2 and v3 = v2. This
implies that the following flux configuration satisfies flux balance constraints: u = w = 1, v1 = −1 and
v2 = v3 = 2. However v1 is inverted with respect to the arrow shown in Fig. 1, leading to an infeasible
cycle. In specific, if we take µ1 = 10, µ2 = 3, µ3 = 5 (units not specified), then taking unit stoichiometry
for simplicity we have ∆G1 = −5 and v1∆G1 > 0, violating the second law of thermodynamics. If one
applies MinOver to this system with the directions given by the mass-balanced state described above,
the algorithm will try to correct chemical potentials in order to reach a solution of the thermodynamic
feasibility conditions but will quickly get stuck in the cycle and fail to converge. The output for this case
would look as follows (the initial chemical potential vector is µ = (10, 3, 5)):
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reaction 1 has flux v_1=-1 but the free energy is G_1=-5

from g_1=10 to g_1=9.9

from g_3=5 to g_3=5.1

reaction 1 has flux v_1=-1 but the free energy is G_1=-4.8

from g_1=9.9 to g_1=9.8

from g_3=5.1 to g_3=5.2

[....]

reaction 1 has flux v_1=-1 but the free energy is G_1=-3.2

from g_1=9.1 to g_1=9

from g_3=5.9 to g_3=6

reaction 1 has flux v_1=-1 but the free energy is G_1=-3

from g_1=9 to g_1=8.9

from g_3=6 to g_3=6.1

reaction 3 has flux v_3=2 but the free energy is G_3=1.7

from g_2=4.4 to g_2=4.5

from g_3=6.1 to g_3=6

reaction 1 has flux v_1=-1 but the free energy is G_1=-1.5

from g_1=7.5 to g_1=7.4

from g_3=6 to g_3=6.1

[...]

reaction 2 has flux v_2=2 but the free energy is G_2=0.2

from g_1=5.9 to g_1=6

from g_2=6.1 to g_2=6

reaction 1 has flux v_1=-1 but the free energy is G_1=0

from g_1=6 to g_1=5.9

from g_3=6 to g_3=6.1

reaction 3 has flux v_3=2 but the free energy is G_3=0.1

from g_2=6 to g_2=6.1

from g_3=6.1 to g_3=6

reaction 2 has flux v_2=2 but the free energy is G_2=0.2

from g_1=5.9 to g_1=6

from g_2=6.1 to g_2=6

reaction 1 has flux v_1=-1 but the free energy is G_1=0

from g_1=6 to g_1=5.9

from g_3=6 to g_3=6.1

reaction 3 has flux v_3=2 but the free energy is G_3=0.1

from g_2=6 to g_2=6.1

from g_3=6.1 to g_3=6

reaction 2 has flux v_2=2 but the free energy is G_2=0.2

from g_1=5.9 to g_1=6

from g_2=6.1 to g_2=6

reaction 1 has flux v_1=-1 but the free energy is G_1=0

from g_1=6 to g_1=5.9

from g_3=6 to g_3=6.1

[....]

One sees that the time series of the least satisfied constraint ends up cycling from v1 (initial), to v3 to
v2 and back to v1. While running, the algorithm will record this time series. After failing to converge
for a large number of time steps, it will finally stop and start searching for loops among the reactions
recorded as the least satisfied constraints over time. Once the loop has been found ((v1, v2, v3) in this
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case), its fluxes will be corrected according to mass balance by just adding a common term in such a way
that the reaction carrying the smallest flux (in absolute value) is inverted. In this case, the update inverts
flux v1. After this, the algorithm will re-start looking for a feasible chemical potential vector. The output
for this part would look as follows:

Exceedingly large times: searching for loops

searching among 3 reactions

checking for loops large 2

checking for loops large 3

loop of size 3 among

reaction 0 v_0=-1

reaction 1 v_1=2

reaction 2 v_2=2

correct them by 1.1

v_0=0.1

v_1=0.9

v_2=0.9

reaction 3 has flux v_3=0.9 but the free energy is G_3=2

from g_2=3 to g_2=3.1

from g_3=5 to g_3=4.9

reaction 3 has flux v_3=0.9 but the free energy is G_3=1.8

from g_2=3.1 to g_2=3.2

from g_3=4.9 to g_3=4.8

reaction 3 has flux v_3=0.9 but the free energy is G_3=1.6

from g_2=3.2 to g_2=3.3

from g_3=4.8 to g_3=4.7

reaction 3 has flux v_3=0.9 but the free energy is G_3=1.4

from g_2=3.3 to g_2=3.4

from g_3=4.7 to g_3=4.6

reaction 3 has flux v_3=0.9 but the free energy is G_3=1.2

from g_2=3.4 to g_2=3.5

from g_3=4.6 to g_3=4.5

reaction 3 has flux v_3=0.9 but the free energy is G_3=1

from g_2=3.5 to g_2=3.6

from g_3=4.5 to g_3=4.4

reaction 3 has flux v_3=0.9 but the free energy is G_3=0.8

from g_2=3.6 to g_2=3.7

from g_3=4.4 to g_3=4.3

reaction 3 has flux v_3=0.9 but the free energy is G_3=0.6

from g_2=3.7 to g_2=3.8

from g_3=4.3 to g_3=4.2

reaction 3 has flux v_3=0.9 but the free energy is G_3=0.4

from g_2=3.8 to g_2=3.9

from g_3=4.2 to g_3=4.1

reaction 3 has flux v_3=0.9 but the free energy is G_3=0.2

from g_2=3.9 to g_2=4

from g_3=4.1 to g_3=4

reaction 3 has flux v_3=0.9 but the free energy is G_3=-0

from g_2=4 to g_2=4.1
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from g_3=4 to g_3=3.9

chemical potentials:

10 4.1 3.9

fluxes:

1 0.1 0.9 0.9 1

We have finally obtained the mass-balanced flux configuration defined by (u,w) = (1, 1) and v =
(0.1, 0.9, 0.9) with chemical potentials µ = (10, 4.1, 3.9), corresponding to thermodynamic feasibility.

We remind that in presence of a cycle in the N-dimensional flux configuration v, by definition there
exist N numbers ki ≥ 0 (not all zero) such that∑

α

sign(vi)kiSα,i = 0 ∀α . (1)

Now, if we consider the configuration v′ defined as

v′i = vi + λkisign(vi) , (2)

it is easy to see that v and v′ satisfy the same mass balance equations for constant λ. This means
that starting from a mass-balanced configuration the above procedure yields another mass-balanced
configuration.


