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Supplements

1. EM algorithm

This section is an extended version of the EM Section in the main text. We report the results that
arise from the EM algorithm when applied to our situation. The calculations involve only elementary
algebra but are sometimes tedious. According to [1], the likelihood function (�structure likelihood�) of
the signals graph in a NEM is

L(Θ, H) = P (D | Θ, H) =
∏
j∈S

∏
k∈E

P (Djk | (ΘH)jk) =
∏
j,k

pjk(1.1)

The log likelihood can be written as

log L(Θ, H) = logP (D | H,Θ) =
∏
j,k

pjk

= log
∏
j,k

[P (Djk | (ΘH)jk)/qjk] + log
∏
j,k

qjk

=
∑
j,k

log

{
pjk/qjk if (ΘH)jk > 0

1 if (ΘH)jk = 0
+ const

=
∑
j,k

{
Rjk if (ΘH)jk > 0

0 if (ΘH)jk = 0
+ const

=
∑
j,k

(ΘH)jkRjk + const

=
∑
j

[∑
k

(ΘH)jk(RT )kj

]
+ const

=
∑
j

(ΘHRT )jj + const(1.2)

= trace(ΘHRT ) + const(1.3)

The (full) posterior is then given by

logP (Θ, H | D) = logP (D | H,Θ) + log π(Θ, H) + const

We assume edge-wise independent priors, π(Θ, H) = πS(Θ)·πE(H), and πS(Θ) =
∏
i,j π

S(Θij), π
E(H•k) =∏

k π
E(H•k).

1.1. The general EM algorithm. Throughout this section, the dataD resp. the matrix R is considered
given and �xed. We want to �nd the maximum a posteriori estimate Θ̂ for the signals graph,

(1.4) Θ̂ = arg max
Θ

P (Θ | D) = arg max
Θ

∑
H∈ME

P (Θ, H | D)

The Expectation-Maximization algorithm was developed exactly for this purpose, to perform a maxi-
mization task in the presence of hidden variables [2]. The EM proceeds by iteratively constructing a
sequence of parameter estimates Θt, t = 1, 2, ... such that the sequence (P (Θt | D))t=1,2,... is monotoni-
cally increasing, and converges (under mild additional assumptions that are met in our case) to a local
maximum of P (Θ | D).
The expectation (E-)step of the EM algorithm involves calculating the expectation value Q(Θ; Θt),

Q(Θ; Θt) = EP (H|D,Θt) [ logP (D,H | Θ) ] =
∑

H∈ME

logP (D,H | Θ) · P (H | D,Θt) .(1.5)
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The maximization (M-)step of the EM algorithm then consists of �nding

(1.6) Θt+1 = arg max
Θ

[
Q(Θ; Θt) + log πS(Θ)

]
,

which is usually a much easier task than solving (1.4) directly. In the following, both steps are described
in detail.

1.2. The E-step. Let us assume that the priors for Θ and H are independent, π(Θ, H) = πS(Θ)πE(H).
Then, the terms in Q(Θ; Θt) can be rearranged

Q(Θ; Θt) = EP (H|D,Θt) [ logP (D,H | Θ) ](1.7)

=
∑
H

P (H | D,Θt) logP (D,H | Θ)

=
∑
H

P (D | H,Θt)P (H | Θt)

P (D | Θt)
log(P (D | H,Θ)P (H | Θ))

=
π(H,Θ) =πE(H)πS(Θ) 1

P (D | Θt)

∑
H

P (D | H,Θt)πE(H)[ logP (D | H,Θ) + log πE(H) ]

= c−1
∑
H

P (D | H,Θt)πE(H) logP (D | H,Θ) + const

with a normalizing factor c = P (D | Θt) =
∑
H P (D | H,Θt)πE(H) and a constant that does not depend

on Θ. The problem of maximizing Q(Θ; Θt) is therefore equivalent to maximizing Q̃(Θ; Θt), where

(1.8) Q̃(Θ; Θt) = c−1
∑
H

P (D | H,Θt)πE(H) logP (D | H,Θ)

We seek for an expression for (1.6) which is amenable to analytic maximization strategies. Let V = RE
be an m-dimensional vector space, which is spanned by the unit column vectors ek ∈ V , k ∈ E , and let
e0 = 0 ∈ V . We assume further that the prior for H factorizes into priors for each e�ect,

(1.9) πE(H) =
∏
k∈E

πEk (Hek) .

Let dj be the j-th unit column vector of dimension n, and d0 the n-dimensional null vector. The NEM
model assumes that each e�ect assigns to at most one signal, so πEk (v) = 0 for each vector v 6∈ {dj ,
j = 0, ..., n}, k ∈ E , and

(1.10) πEk (dj) = πjk , j = 0, 1, ..., n, and

n∑
j=0

πEjk = 1 .

The m×m unit matrix is denoted by E. Be aware of the identity E =
∑
k∈E eke

T
k . We take advantage of

the fact that the trace of a quadratic matrix is a linear function, and that tr(AB) = tr(BA) for arbitrary
(compatible) matrices A, B.

tr(ΘHRT ) = tr(RTΘH) = tr(
∑
k∈E

eke
T
kR

TΘH)(1.11)

=
∑
k∈E

tr(eke
T
kR

TΘH) =
∑
k∈E

eTkR
TΘ(Hek)

Thus by (1.3), letting gk(v,Θ) = eTkR
TΘv,

(1.12) logP (D | H,Θ) =
∑
k∈E

gk(Hek,Θ) + const.
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Analogously,

(1.13) P (D | H,Θt) ∝ exp(tr(ΘtHRT )) =
∏
k∈E

fk(Hek,Θ
t) ,

with fk(v,Θt) = exp(gk(v,Θt)). For convenience we suppress the dependence of gk on Θ (and write
gk(v) instead of gk(v,Θ)) and of fk on Θt (and write fk(v) instead of fk(v,Θt)). Let W = {0, 1}n. The
evaluation of Q̃(Θ; Θt) can be simpli�ed considerably. For r = 1, ...,m, let

(1.14) Fr(Θ) =
∑
vr∈W

∑
vr+1∈W

...
∑
vm∈W

 m∏
l≥r

πEl (vl)fl(vl)

 ·
 m∑
k≥r

gk(vk)


Note that

Q̃(Θ; Θt) = c−1
∑
H

P (D | H,Θt)πE(H) logP (D | H,Θ)(1.15)

(1.12,1.13)
= c−1

∑
H

(
m∏
l=0

πEl (Hel)fl(Hel)

)
·

(
m∑
k=0

gk(Hek)

)
= c−1 F1(Θ)

We introduce two more terms,

Ak =
∑
v∈W

πEk (v)fk(v) =

n∑
j=0

πEjkfk(dj)(1.16)

Bk(Θ) =
∑
v∈W

πEk (v)fk(v)gk(v) =

n∑
j=0

πEjkfk(dj)gk(dj) .(1.17)

Fr can be calculated from Fr+1 via the recursive formula (1.18):

Fr(Θ) =
∑

vr+1,...,vm∈W

∑
vr∈W

(
πEr (vr)fr(vr) ·

m∏
l>r

πEl (vl)fl(vl)

)
·

 m∑
k≥r

gk(vk)


=

∑
vr+1,...,vm∈W

(
m∏
l>r

πEl (vl)fl(vl)

)
·
∑
vr∈W

πEr (vr)fr(vr) ·

 m∑
k≥r

gk(vk)


=

∑
vr+1,...,vm∈W

(
m∏
l>r

πEl (vl)fl(vl)

)
·
∑
vr∈W

πEr (vr)fr(vr) ·

(
gr(vr) +

m∑
k>r

gk(vk)

)

=
∑

vr+1,...,vm∈W

(
m∏
l>r

πEl (vl)fl(vl)

)
·

(
Br(Θ) +Ar

m∑
k>r

gk(vk)

)

= Br(Θ)

(
m∏
l>r

∑
vl∈W

πEl (vl)fl(vl)

)
+

∑
vr+1,...,vm∈W

 m∏
l≥r+1

πEl (vl)fl(vl)

Ar m∑
k≥r+1

gk(vk)


= Br(Θ)

m∏
l>r

Al + Ar · Fr+1(Θ)(1.18)

By reverse induction we prove the formula

(1.19) Fr =

∏
l≥r

Al

∑
k≥r

Bk(Θ)

Ak

 ,
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the initial case r = m is Fm(Θ) =
∑
v∈W πEk (v)fk(v)gk(v) = Bm(Θ) = Am · Bm(Θ)

Am
. The induction step

is completed by

Fr
(1.18)

= Br(Θ)

m∏
l>r

Al + Ar · Fr+1(Θ)(1.20)

= Br(Θ)

m∏
l>r

Al + Ar

(∏
l>r

Al

)(∑
k>r

Bk(Θ)

Ak

)

=
Br(Θ)

Ar

m∏
l≥r

Al +

∏
l≥r

Al

(∑
k>r

Bk(Θ)

Ak

)

=

∏
l≥r

Al

∑
k≥r

Bk(Θ)

Ak


We realize that

c =
∑
H

P (D | H,Θt)πE(H)
(1.13), πE(H)=

∏
k∈E π

E
k (Hek)

=
∑

v1,...,vm∈W

(
m∏
k=1

πEk (vk)fk(vk)

)

=
m∏
k=1

∑
vk∈W

πEk (vk)fk(vk) =

m∏
k=1

Ak(1.21)

(note that gk(dj ,Θ) = eTkR
TΘdj = (RTΘ)kj). Note that for a deterministic prior, �xing an e�ects gene

assignment H ∈ {0, 1}n×m,

log c =

m∑
k=1

logAk

=

m∑
k=1

log

 n∑
j=0

πEjkfk(dj)

 =

m∑
k=1

log

 n∑
j=0

πEjk exp gk(dj ,Θ
t)


=

m∑
k=1

log

 n∑
j=0

πEjk exp (RTΘt)kj


=

m∑
k=1

log
(
H•k exp (RTΘt)k•

)
H∈{0,1}n×m

=

m∑
k=1

H•k(RTΘt)k•

= tr
(
HRT θt

)
(1.22)

Finally, we obtain

Q̃(Θ; Θt)
(1.15)

= c−1 · F (Θ)(1.23)

(1.20),(1.21)
=

(
m∏
k=1

Ak

)−1

·

(
m∏
l=1

Al

)(
m∑
k=1

Bk(Θ)

Ak

)

=

m∑
k=1

Bk(Θ)

Ak
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1.3. The M-step. According to Eq. (3) in the main text and (1.23) we have to maximize

Q̃(Θ; Θt) + log πS(Θ) =
∑
k∈E

Bk(Θ)

Ak
+ log πS(Θ) .(1.24)

As a further simpli�cation we assume edgewise independent priors:

πS(Θ) =
∏
i,j

(πSij)
Θij (1− πSij)1−Θij , with 0 ≤ πSij ≤ 1(1.25)

(we may disregard the cases in which πSij ∈ {0, 1}, because this means that the corresponding edge Θij

is �xed as absent or present and is therefore not subject to optimization). The log of the prior is then a
linear function in each Θab:

log πS(Θ) = log
∏
i,j

π
Θij

ij (1− πij)1−Θij(1.26)

=
∑
i,j

[ Θij log πij + (1−Θij) log(1− πij) ]

=
∑
i,j

[ Θij(log πij − log(1− πij) + log(1− πij) ]

=
∑
i,j

Θij log
πij

1− πij
+ const =:

∑
i,j

Θijτ ij + const

This implies that the objective function (1.24) Q̃(Θ; Θt) + log πS(Θ) is a polynomial in the variables
{Θab | a = 1, ..., n; b = 1, ..., n} of total degree 1. The partial derivatives of the objective function with
respect to Θab are therefore constant, i.e., independent of Θ (Note that Θdj equals the j-th column of
Θ, so gk(dj ,Θ) = eTkR

TΘdj is linear in the entries of Θ):

∂gk(dj ,Θ)

∂Θab
=

∂

∂Θab
[(eTkR

T )(Θdj)] =
∂

∂Θab

n∑
i=1

RikΘij(1.27)

=

n∑
i=1

Rik
∂

∂Θab
Θij = δj=bRak .

Hence

∂Bk(Θ)

∂Θab
=

n∑
i=0

πEikfk(di,Θ
t)

∂

∂Θab
gk(ds,Θ)

(1.27)
=

n∑
i=0

πEikfk(di,Θ
t)δi=bRak(1.28)

= πEbkfk(db,Θ
t)Rak

Consequently,

∂Q̃(Θ; Θt)

∂Θab
=

∂

∂Θab

m∑
k=1

Bk(Θ)

Ak
=

m∑
k=1

πEbkfk(db,Θ
t)Rak

Ak
,(1.29)

which together with (1.26) implies

∂(Q̃(Θ; Θt) + log πS(Θ))

∂Θab
=

m∑
k=1

πEbkRak exp(gk(db,Θ
t))(Ak)−1 + τab ,(1.30)

Using the step function step(x) =

{
1 if x > 0

0 if x ≤ 0
, the updated values in Θt+1 can be stated in closed form:

Θt+1
ab = step

{
m∑
k=1

Rakπ
E
bk exp((RTΘt)kb)(Ak)−1 + τab

}
.(1.31)
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In the general case of an arbitrary prior πS(Θ), it can be di�cult to �nd a global optimum of the objective

function Q̃(Θ; Θt)+log πS(Θ). However it is not necessary to �nd a global optimum, it is su�cient to �nd

a Θt+1 that increases the value of the objective function over the current value Q̃(Θ; Θt) + log πS(Θt).
It has been shown in [3] that such a "stepwise" EM still converges to a local maximum of P (Θ | D).
Therefore, we start with Θ = Θt and go through all edges Θab in a random order and check whether
alteration of Θab improves the objective function. If yes, we perform this change in Θ and continue until
all edges were checked. The resulting Θ is our new Θt+1.
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Figure 2.1. Posterior Distribution. This �gure illustrates how the likelihood varies
when only few edges (here: 1 to 3) are changed, based on randomly sampled �xed graphs
(white lines) and relative to a �xed representative random graph sample (light gray). The
underlying data is the real Mediator perturbation data, where Med10 and Med21 are
combined to one signal node (i.e., | S |= 9), as a prior for the e�ects graph the data driven
prior has been used (according to the initialization of the MCMC sampling). On the
x-axis, di�erent graph densities are compared. The strong variation within very similar
graphs, demonstrates how rugged the landscape is. Given that the underlying data of
this �gure is the real data, the observed decrease of likelihoods following the increase of
edge frequency yields extra information: It shows that the true Mediator graph we are
looking for tends to be rather sparse, which is a con�rmation for the choice of the earlier
mentioned sparseness prior during MCMC sampling.

2. MCMC sampling

2.1. MCMC sampling in general.

The Metropolis-Hastings algorithm.

(1) Initialize Θ0

(2) Proposal step: Given Θn, draw a candidate Θ
′
from the proposal distribution q(Θn → Θ

′
)

(3) Acceptance step: With probability min(1, L(Θ
′
)·π(Θ

′
)·q(Θ

′
→Θn)

L(Θn)·π(nn)·q(nn→Θ′ )
), let Θn+1 = Θ

′
(accept). Other-

wise, let Θn+1 = Θn (reject).
(4) Increment n by one and repeat steps 2. and 3. until convergence

Convergence. Starting from a (generally) randomly chosen initial parameter value, it takes some time
until the chain converges to the true probability distribution. Thus, the �rst part of the chain, the
so-called burnin phase is removed and only the so-called stationary phase is used for further analysis.
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Figure 2.2. A classical situation in which EMiNEM gets stuck in a local
maximum. Considering an extract of MS , where Θ includes the edge a → c, two
di�erent states are possible: either both edges a → b and b → c are missing (medium
probability, indicated by orange) or both of them exist (high probability, indicated by
red). A graph which includes only one of them has a low probability (indicated by blue).
Thus, based on a Θt = {a→ c}, EMiNEM is not able to cross the low-probability states
to arrive at the high probability state, changing only one edge at the same time.

2.2. MCMC for EMiNEM. In the following, the most important elements of the algorithm are shortly
described.

Chain length. Each chain consists of 60.000 steps. A major component of Markov Chain Monte Carlo
sampling is the decision after how many steps the chain has converged, i.e., how many steps have to
be excluded at the beginning of the sequence, such that the �nal part reliably represents the desired
posterior distribution. Here, this decision is trivial: traceplots of the simulation runs showed, that after
well less than the 60.000 steps the chain converges to one �nal Θ̂, i.e., the MCMC sampling can be seen
as an additional EM algorithm (see Fig. S3.3). The MCMC runs of the Mediator data showed the same
behavior (see Fig. S4.4). Thus, any information drawn from this �nal part of the sequence is good.
However, for reasons of consistency, and since the e�ect gene attachment is updated every 5000 steps (as
described before), only parameters according to the �nal attachment, i.e., the 5000 last parameters of
the sequence are retained.

Prior information. Since nothing is known about the signals graph, a uniform prior is chosen (i.e., edge
frequency = 0.5). For the e�ects graph, an (edgewise independent) prior is calculated for each e�ect
node, as explained in the main text. However, if additional prior information on either the signals graph
or the e�ects graph is available, its incorporation can speed up convergence time.

Initial parameter. The chain is initialized with a randomly sampled signals graph, based on a sparse edge
frequency. Independence of the chain from the initial signals graph (which is an essential property of
Markov Chains) has been veri�ed by simulation.
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Proposal function. At each step, a new candidate parameter Θ
′
is suggested based on the last one (Θn).

The crux is to choose a proposal function q(Θn → Θ
′
), such that it is a trade-o� between steps that

are big enough to scan the whole parameter space in reasonable time, but small enough to still being
accepted. Simulation has shown that randomly selecting 1.5 · |S| edges and replacing them according to
the prede�ned edge frequency results in both su�cient acceptance and good mixing of the chain.

Acception / Rejection. The newly suggested parameter is accepted (and added to the chain), if

log(u) < min(0,
(

logL(Θ̂
′
) + log π(Θ̂

′
) + log q(Θ

′ → Θn)
)

−
(

logL(Θ̂n) + log π(Θ̂n) + log q(Θn → Θ
′
)
)

+ wsparse ·
(

log πsparse(Θ
′
)− log πsparse(Θn)

)
) , with u ∼ U(0, 1) ,

otherwise it is rejected and the old parameter is added once again. Note that Θ is the signals graph
suggested by the proposal function, while Θ̂ is the corresponding local maximum derived by EMiNEM,

as explained in the main text. We included an additional prior πsparse(Θ) =
∏
j,k f

Θjk

edge · (1− fedge)(1−Θjk)

for sparsity of the sampled graph (fedge is the expected relative edge abundance of the sampled graph).
The corresponding weighting parameter wsparse = 0.5 has been determined empirically during simulation.
Moderate variation of wsparse did not change the results qualitatively (data not shown).

Resulting signals graph. The Markov Chain provides an approximation of the posterior distribution of
the sampled parameters. We extract one �resulting� signals graph from this chain by weighting all edges
by their frequency in the last 5000 steps and only retaining those that appear in at least 50%. In
general, this marginalization might result in a loss of information because dependencies between edges
are not considered any more. However, since the Markov Chain in our case converges very fast to a
unique, dominating signals graph which then will be extracted as the resulting graph, there basically is
no marginalization and so this problem does not arise here.

2.3. A theoretical motivation for the sampling of local maxima. EMiNEM is viewed as a function
EM : Θ 7→ Θ̂ = EM(Θ), which maps the signals graph spaceMS onto the space N = EM(MS) of local
maxima of the posterior. The current paragraph is devoted to constructing a sequence inN that provides a
representative sample of P |N , the restriction of the posterior probability P to N . Our task is complicated
by the fact that we cannot construct functions that sample from N directly, because the calculation of
each member requires the application of EMiNEM. Instead, we use Metropolis-Hastings Markov Chain
Monte Carlo (MCMC) sampling [4�6] to construct a sequence inMS , and lift it to N (see Supplements
S2.2 for details on our implementation). Let (Θi)i=1,2,... be a sequence of signals graphs inMS obtained
by MCMC sampling from the distribution P . The corresponding sequence (EM(Θi))i=1,2,... is then an

approximate empirical sample from the distribution P̂ (Θ̂) =
∑
{P (Θ | D); EM(Θ) = Θ̂} ≈ P |N (Θ̂) on

N . This approximation is valid under the assumption that the probability of P (Θ̂ | D) is substantially

larger than P (Θ | D) for all other Θ ∈ EM−1(Θ̂), which is presumably the case. However, the convergence
speed of this Markov chain is very slow, the reason being implicit in the assumption: In order to move
from one local maximum to a di�erent one, the underlying Markov Chain inMS needs to traverse regions
of substantially lower probability. We remove this obstacle by sampling (Θi)i=1,2,... from the distribution
Q(Θ) ∝ P (EM(Θ) | D) instead of sampling from P . The corresponding sequence (EM(Θi))i=1,2,... is
then an approximate empirical sample from the distribution

P̂ (Θ̂) ∝
∑
{P (EM(Θ) | D); EM(Θ) = Θ̂} = P (Θ̂ | D) · |{Θ; EM(Θ) = Θ̂}|

≈ P (Θ̂ | D) · c(2.1)
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Figure 2.3. The search strategy used by MC EMiNEM can be perfectly illustrated
based on this mountain view from the top of the Hintere Karlesspitze in the Stubai
Alps. The green dots represent the sampled signals graphs Θ1,Θ2, ... ∈MS forming the
underlying Markov chain (the green line). At every step the EM algorithm is applied

to identify the corresponding local maxima Θ̂j ∈ N (the red dots), and the decision
on acceptance or rejection of a new proposition Θ′ is based on the corresponding local
maximum Θ̂′.The sequence Θ̂1, Θ̂2, ... is then approximately a representative sample
of the posterior distribution of the local maxima. This combination of Expectation
Maximization and MCMC sampling o�ers a way to restrict the sequence derived from
the sampling process to the most informative parameters.

The last approximation assumes that the pre-image of Θ̂ under EM has a similar size c for all Θ̂ ∈ N .

In any case, we expect the relative probability P̂ (Θ̂1)

P̂ (Θ̂2)
to be dominated by the quotient P (Θ̂1|D)

P (Θ̂2|D)
, which

justi�es our approximation in Equation (2.1) for the purpose of �nding high-scoring graphs Θ̂.

2.4. Empirical Bayes estimation of the e�ects graph prior. The attachment probability Hi
jk of

e�ect node k to signal node j, based on one signals graph Θi, is:

Hi
jk = P (Hi

•k = ej |Θi, R,Hold) =
exp f ik(j)∑
j exp f ik(j)

, with

f ik(j) =

{
log π(Hold

jk ) +R•kΘi
•j for jεS

log π(Hold
jk ) for j the null node

The new attachment probability, based on the preceding N = |chain|
12 steps of the Markov Chain, is

then Hnew =
∑N

i=1H
i

N .
In our approach, we do not sample fromMS directly, but we sample from a set of local maxima N .

This set is much smaller and develops slower thanMS , as can be seen in the traceplots. Note that this
set changes every epoch, since the prior is updated empirically.

3. Simulation

3.1. Data generation. Simulated data has been generated using the method createNEM, provided by
Nessy [7]. It takes as input the number of signals | S |true and e�ect genes | E |true, as well as the two
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Figure 3.1. A simulated Nested E�ects Model for | S |= 8 and β− level = 49%.
Above, the signals graph is shown, below the corresponding Rmatrix, clustered according
to the gene attachment (rows: perturbations, columns: e�ects on measured genes). Red
color indicates a positive log-ratio value, blue color indicates a negative log-ratio value.
The stronger the color of a �eld Rkj , k ∈ E , j ∈ S, the higher the probability that the
measured data is due to the fact that there actually is an e�ect of signal j on gene k, or,
that there is no e�ect, respectively.
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Figure 3.2. The prediction for the simulated NEM in Fig. S3.1. Above, the resulting
signals graph is shown, below the underlying R matrix, clustered according to the �nal
gene attachment (rows: perturbations, columns: e�ects on measured genes). Red color
indicates a positive log-ratio value, blue color indicates a negative log-ratio value. The
stronger the color of a �eld Rkj , k ∈ E , j ∈ S, the higher the probability that the
measured data is due to the fact that there actually is an e�ect of signal j on gene k,
or, that there is no e�ect, respectively. The R matrix here is the same as in Fig. S3.1,
but the ordering of genes (columns) is di�erent, since it depends on the gene attachment
derived by the MCMC sampling.
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noise parameters µ and δ. Θtrue and Htrue are randomly sampled according to | S |true and | E |true and
the true data matrix (| S |true × | E |true) is calculated according to these graphs. A noisy log-odds ratio
matrix is then calculated based on the true e�ects by sampling its values from two normal distributions
with (mean = −µ2 , sd = δ) and (mean = µ

2 , sd = δ), respectively. µ and δ have been chosen such that
the α − level and the β − level have the values described in the main text. A simulated NEM and the
corresponding prediction of MC EMiNEM, for | S |= 8 and β − level = 49% are shown in Fig. S3.1 and
Fig. S3.2.

3.2. Behavior of the MCMC chain.

Convergence. The convergence of the Markov chain is important in order to get a representative sample
of parameter values. It has been veri�ed in simulation runs, as outlined in the main part of this paper.
Traceplots for the example mentioned above (Fig. S3.1, Fig. S3.2) are shown in Fig. S3.3 (all edges) and
Fig. S3.4 (selected edges).

Attachment of e�ects. The development of the attachment of e�ects to signal nodes during the Empirical
Bayes procedure is visualized in Fig. S3.5. The attachment predicted by MC EMiNEM is compared to
the true one in Fig. S3.6.

Independence of initialization. For six simulated NEMs, randomly chosen from two parameter settings
(one with | S |= 8 and β − level = 49%, the second with | S |= 11 and β − level = 20%), 10 runs each
initialized with a di�erent signals graph have been performed. For all of the six datasets, the ten results
where the same, i.e., independent of initialization (data not shown).

|E| = 1000 |E| = 5000

MC
EMiNEM

[min]

EMiNEM

[s]

nem

[s]

Nessy

[s]

MC
EMiNEM

[min]

EMiNEM

[s]

nem

[s]

Nessy

[s]

|S| = 5 25 0.03 1.61 0.09 130 0.13 13 0.55

|S| = 8 27 0.03 4.40 0.14 244 0.25 14 0.35

|S| = 11 29 0.03 2.44 0.1 1320 1.32 29 0.38

MC EMiNEM EMiNEM nem Nessy

Mediator data 104 min 0.1 s 26 s 0.3 s

Table 1. The three available NEM implementations are compared with regard to their
run time (seconds, resp. minutes for MC EMiNEM). The upper table is based on simu-
lated (and randomly generated) datasets and includes varying signals graph and e�ects
graph sizes. The lower table is based on the Mediator data. The run times for MC
EMiNEM include 6 · 104 MCMC steps, however, this number may be reduced, if the
convergence speed of the Markov chain is su�ciently high.

3.3. Prediction quality. To assess the prediction quality, MC EMiNEM has been compared to four
other methods. In the following, the results of this comparison (as depicted in �gure 2 A) are discussed
and a detailed explanation of the four methods is provided. In all cases, the priors for the signals graph
and for the e�ects graph are the same, as described in the main text, to ensure a fair basis for comparison.
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Figure 3.3. Traceplot of one MCMC run. Here, | S |= 8 and β − level = 49%.
The left panel shows the traceplot for the sampled graphs (Θi)i=1,2,..., the right panel

shows the traceplot for the corresponding local maxima (Θ̂i)i=1,2,.... The MCMC steps
are depicted on the y-axis (from top to bottom), individual edges on the x-axis, thus,
one line in the traceplot corresponds to the signals graph of the corresponding MCMC
step. Black �elds indicate the presence, white �elds the absence of a given edge in a
given MCMC step. Completely black columns represent self-loops, which are de�ned
to be present in the mathematical formulation and included here for reasons of clarity.
Since various signals graphs can yield the same local maxima, the sampled graphs vary
strongly throughout the whole sampling process, while the local maxima vary slower and
in a more restricted model space and converge in the second half of the Markov chain.
This behavior has been discussed extensively in the main text.
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Figure 3.4. Traceplots of selected edges. Here, | S |= 8 and β − level = 49%.
The upper panel shows the traceplots of selected edges in the sequence of local maxima
(Θ̂i)i=1,2,..., the lower panel shows the traceplot of these edges in the sequence of the
underlying sampled signals graphs (Θi)i=1,2,.... On the x-axis, extracts of the MCMC
steps at the beginning (1− 1500) and the end (57500− 60000) of the chain are depicted.
Selected edges (edges, that vary in the sequence of local maxima) are depicted in di�erent
colors. Stacked on the y-axis are values of 0 and 1 for each edge, corresponding to the
absence and presence of the edge at a given MCMC-step. The traceplots here show the
same behavior as has already been discussed in Fig. S3.3.
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Figure 3.5. Development of attachment entropy. For each e�ect j in each Empirical
Bayes step l, the Shannon Entropy is calculated as follows: −

∑
j∈S H

l
jk · log2H

l
jk. On

the y-axis, the Empirical Bayes steps are depicted (from top to bottom), on the x-axis,
the e�ects are listed. The colors indicate the entropy, relative to the maximal one (when,
for a given e�ect, the attachment probability is the same for any signal node (or no signal
node at all) ). Obviously, even though the initial prior for the e�ects graph is calculated
according to the data matrix, the entropy is still very high. During the Empirical Bayes
procedure, some e�ects turn out to be quit deterministic, while others remain �exible
until the end of the Markov chain.

Random. For each NEM, 5000 random signals graphs have been sampled, according to the parameters
described in the main text. Every (unique) graph has than been weighted by its posterior and a consensus
signals graph has been built including all edges with a (weighted) value of ≥ 0.5. This is the most trivial
method for parameter estimation.
As expected, this method yields quit good results for small numbers of signal nodes, where the probability
of randomly drawing reasonable graphs is higher. However, for larger number of signal nodes, independent
of the noise level, this method is not able to detect the correct edges at all.

EMiNEM. This method is based on the random sampling approach, except that not the sampled signals
graphs but their corresponding local maxima have been weighted and combined to a consensus signals
graph.
EMiNEM is slightly better than random sampling, because by only taking into account local maxima
unlikely graphs are excluded from the consensus. However, it still relies on random drawing of signals
graphs and only yields good results for small numbers of nodes. By comparing it to the considerably
better results of the more elaborate MC EMiNEM it is clearly visible that the more complex and time-
consuming Markov Chain Monte Carlo approach, which leads to a reasonably �guided� sampling of the
model space, is justi�ed.
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Figure 3.6. Prediction quality for the e�ects graph. Here, an entry in row i
and column k depicts the probability that an e�ect, attached to signal node i in the
true model, is attached to signal node k in the predicted model (i.e., rows correspond
to the true attachment, columns to the predicted one). Light gray corresponds to low
probabilities, dark gray to high ones (see the scale on the right-hand side). The predicted
attachment corresponds very well to the true one in most cases, except for e�ects attached
to signal node d - which corresponds very well to the missing edges including d during
the prediction the signals graph (Fig. S3.2).

Nessy. Nessy is a publicly available NEM implementation, introduced by [1]. Unlike (MC) EMiNEM it's
a maximum full likelihood / posteriori approach, where not only the maximum for the signals graph but
also for the e�ects graph should be identi�ed. Since no prior knowledge regarding the signals graph is
available, but a sparse graph is assumed, Nessy is initialized with the empty graph.
MC EMiNEM is a maximum marginal posteriori approach, it only calculates the maximum for the signals
graph and marginalizes over the e�ects graph. For good data, with low amount of noise, the e�ects graph
is clearly identi�able and MC EMiNEM and Nessy perform comparably. However, for higher noise the
calculation of the maximum e�ects graph is error-prone and the risk of getting stuck in the wrong model
is high, so Nessy is clearly outperformed by MC EMiNEM there.

nem. nem is the original NEM implementation, publicly available through Bioconductor [8]. Recently, [9]
published a review of all currently available NEM algorithms, where they recommend the Bayesian greedy
hillclimbing approach for small networks as the method of choice. It calculates the original NEM score
by integrating over all e�ects graphs. According to these �ndings, we applied nem on the log-odds ratios
with the following parameters: inference="nem.greedy" and type="CONTmLLBayes". Again, we chose
a signals graph prior and an e�ects graph prior as described in the main text.
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Figure 3.7. Cross-methods comparison of speci�city and sensitivity. This �gure displays
the mean speci�city (x-axis) and sensitivity (y-axis) values for all methods (indicated by
di�erent colors) for the parameter settings of Fig. 2A of the main text (i.e., varying
noise levels or varying signals graph sizes, indicated by colors of di�erent brightness and
di�erent plot symbols). Obviously, the speci�city of all methods is very high, making
sensitivity the distinctive feature, as it is shown in Fig. 2A)
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4. Application

4.1. Sample preparation.

Med7N/Med31. This data has been taken from [10].

Med2/Med20/Med31. The S. cerevisiae strain used was BY4742 (Euroscarf): MATα, his2∆1, leu2∆0,
lys2∆0, ura3∆0. The knockout mutants were from Euroscarf and validated by PCR. Samples were grown
in YPD medium medium overnight, diluted to an OD600 of 0.1 the next day and grown to a �nal OD600
of 0.8. Cells were centrifuged at 4,000 rpm for 1 min and cell pellets were immediately �ash frozen in liquid
nitrogen. Total RNA was extracted using the RiboPure-Yeast Kit (Ambion/Life Technologies), following
the manufacturer's protocol. Labeling of samples was performed using the GeneChip 3'IVT Express
Labeling Assay (A�ymetrix) with 250 ng input RNA. Labeled samples were hybridized to GeneChip
Yeast Genome 2.0 microarrays following the instructions from the supplier (A�ymetrix).

Med7C/Med10/Med19/Med21. The S. cerevisiae strains used were derivatives of SLY101: MATα ade-
can1-100 cyh2r his3-11,15 leu2-3,112 trp1-1 ura3 [11]. Samples were grown in SD (synthetic complete)
medium medium overnight, diluted to an OD600 of 0.1 the next day and grown to a �nal OD600 of 0.8.
Cells were centrifuged at 4,000 rpm for 1 min and cell pellets were immediately �ash frozen in liquid ni-
trogen. Total RNA was extracted using the RiboPure-Yeast Kit (Ambion/Applied Biosystems), following
the manufacturer's protocol RNA was extracted as above. Labeling of samples was performed using the
GeneChip 3'IVT labeling Assay (A�ymetrix) with 100 ng input RNA. Labeled samples were hybridized
to GeneChip Yeast Genome 2.0 microarrays following the instructions from the supplier (A�ymetrix).

Med2/Med15/Med20. The S. cerevisiae strain used was BY4741 (Euroscarf): MATa, his3∆1; leu2∆0;
met15∆0; ura3∆0. The knockout mutants with the same genomic background were from Euroscarf and
validated by PCR. Samples were grown in YPD medium overnight, diluted to an OD600 of 0.15 the next
day and grown to a �nal OD600 of 0.8. Cells were labeled with 4-Thiouracil for 6 minutes, then centrifuged
at 3,500 rpm and 30°C for 1 min and cell pellets were resuspend in RNA Later and immediately �ash
frozen in liquid nitrogen. Cells were counted and mixed with labeled S.pombe cells 3:1. Total RNA
was extracted using the RiboPure-Yeast Kit (Ambion/Life Technologies), following the manufacturer's
protocol. Labeled RNA was separated by biotinylation and using the µMACS Streptavidin kit (Miltenyl
Biotec) and followed by the RNeasy MinElute clean up kit (Qiagen). Labeling of the Total and Labeled
RNAs was performed using the GeneChip 3'IVT Express Labeling Assay (A�ymetrix) with 300 ng input
RNA. Labeled samples were hybridized to GeneChip Yeast Genome 2.0 expression microarrays following
the instructions from the supplier (A�ymetrix).

4.2. Data processing. Data processing has been done using R [12].
The arrays were read in and transformed to expression values one by one, using expresso() from the
R/Bioconductor package a�y [13] with the following parameters for background correction and sum-
marization: bgcorrect.method="rma",pmcorrect.method="pmonly",summary.method="avgdi�". Some
arrays included S.pombe probes, they were �ltered to S.cerevisiae. The median expression values were
centered to zero (on the log-scale) for each array(this step has only the purpose of generating a sensible av-
erage expression distribution in the subsequent quantile normalization step). The expression values were
log2 transformed and quantile normalization was performed afterwards using quantile.normalization()
from the a�y-package.
The R/Bioconductor package limma [14] was used for further assessment of di�erential gene expression.
A design matrix was constructed that takes into account batch-speci�c e�ects as well as subunit-speci�c
e�ects. The linear regression model was �tted using lmFit(). Finally, the log-odds ratios corresponding
to subunit speci�c e�ects were extracted using ebayes(). The essential four lines of codes are listed below
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(the design matrix design is the standard design matrix for multiple groups vs. one reference experi-
ments, expr are the expression values derived from the data, lodsmat is the desired log-odds matrix R
(see main text)):

f i t = lmFit ( expr , des ign )

eBayesObj = eBayes ( f i t )

lodsmat = eBayesObj$lods

To accommodate the di�erent experiments that have been combined, contrasts with respect to batch
e�ects have been created and �tted. Genes showing di�erential expression (here with a fold change ≥ 2.5)
with respect to these contrasts were removed from the subsequent analysis. Additionally, genes that do
not react to any perturbation (here with a log-odds ratio < 0 in all cases) were removed.
It is important to check the �nal result R = (Rjk) for artifacts. Sometimes, R contains erratic, extraor-
dinarily high entries that dominate the likelihood term. This is due to the fact that limma performs a
variant of the t-test, in which the variance term is estimated. Although this is done in a robust manner,
it may still sometimes underestimate the true variance, leading to overly signi�cant results. We advise
the user to manually threshold the entries in the R-matrix (e.g., to the 99% quantile of the entries in the
R matrix), if outliers in the R-matrix occur. In our Mediator application, this was not necessary.

4.3. Gene set enrichment analysis for transcription factor targets. The gene set enrichment anal-
ysis was done according to [15], using the R/Bioconductor package mgsa (version 1.2.0) [16], with the fol-
lowing parameters: p=seq(0.02,0.2,by=0.004), alpha=seq(0.02,0.98,by=0.02), beta=seq(0.02,0.98,by=0.02),
steps=(5*1e6), restarts=10. Restraining p to small values ensures a sparse solution. For each gene set a
mgsa run was performed, taking into account only TFs being mapped to at least one gene of the study
set. The total population has been set to all e�ect genes being part of the corresponding Nested E�ects
Model. Only TFs being enriched with a probability of = 50% were valued as signi�cant and further
analyzed.
Two examples of enriched TFs are explained in more detail in the main text (see Fig. 5). Similar �gures
for all Mediator subunit - transcription factor pairs are provided as a separate �le.

4.4. Results.

Predicted Nested E�ects Models. Predicted NEMs are shown in Fig. S4.1, Fig. S4.2 and Fig. S4.3.

Convergence of the Markov Chain. Traceplots for the real data are shown in Fig. S4.4 (all edges) and
Fig. S4.5 (selected edges).

Attachment of e�ects. The development of the attachment of e�ects to signal nodes during the Empirical
Bayes procedure is visualized in Fig. S4.6.

Comparison with cluster analysis. In Fig. S4.7, the clustering of Mediator subunits and genes based on
fold changes and log-odds ratios is depicted. Both approaches lead to an almost identical (isomorphic)
dendrogram, which also agrees well with the MC EMiNEM's signals graph (if edge directions are ignored).
This means that the coarse grouping of Mediator subunits can already be read o� the expression pro�les.
However, MC EMiNEM provides more detailed information on the hierarchical structure of the Mediator
organization, as well as on the attachment of e�ects. Fig. 4.8 compares the networks derived by MC
EMiNEM and by the hierarchical clustering.
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Figure 4.1. The Mediator-NEM treating all subunits as individual nodes,
version 1 (result of nine runs out of 10). Above, the resulting signals graph is
shown, below the underlying R matrix, clustered according to the �nal gene attachment
(rows: perturbations, columns: e�ects on measured genes). Red color indicates a positive
log-ratio value, blue color indicates a negative log-ratio value. The stronger the color of
a �eld Rkj , k ∈ E , j ∈ S, the higher the probability that the measured data is due to
the fact that there actually is an e�ect of signal j on gene k, or, that there is no e�ect,
respectively. There exists an edge Med10 → Med21 as well as Med21 → Med10.The
similarity between the two perturbations is also clearly visible in the perturbation pro�le.
Thus, in the following, the two Mediator subunits are treated as one node in the NEM.
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Figure 4.2. The Mediator-NEM treating all subunits as individual nodes,
version 2 (result of one run out of 10). Above, the resulting signals graph is shown,
below the underlying R matrix, clustered according to the �nal gene attachment (rows:
perturbations, columns: e�ects on measured genes). Red color indicates a positive log-
ratio value, blue color indicates a negative log-ratio value. The stronger the color of a
�eld Rkj , k ∈ E , j ∈ S, the higher the probability that the measured data is due to
the fact that there actually is an e�ect of signal j on gene k, or, that there is no e�ect,
respectively. There exists an edge Med10 → Med21 as well as Med21 → Med10.The
similarity between the two perturbations is also clearly visible in the perturbation pro�le.
Thus, in the following, the two Mediator subunits are treated as one node in the NEM.
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Figure 4.3. The �nal Mediator-NEM, where Med10 and Med21 are combined
to one single node. Above, the resulting signals graph is shown, below the underlyingR
matrix, clustered according to the �nal gene attachment (rows: perturbations, columns:
e�ects on measured genes). Red color indicates a positive log-ratio value, blue color
indicates a negative log-ratio value. The stronger the color of a �eld Rkj , k ∈ E , j ∈ S,
the higher the probability that the measured data is due to the fact that there actually
is an e�ect of signal j on gene k, or, that there is no e�ect, respectively. A detailed
discussion of the results can be found in the main text.
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Study set Transcription factor in population in study set Estimate

Med2 - downregulated TEC1 42 14 0.999
YAP6 73 15 0.963
GTS1 10 3 0.808
SUM1 32 5 0.792
YAP1 25 7 0.780
SWI4 80 11 0.562
ASH1 20 4 0.513

Med7C - downregulated MBP1 77 22 0.991
Med7C - upregulated RPN4 44 11 0.907

Med7N - downregulated SWI5 51 7 0.910
FKH2 65 11 0.901
GLN3 63 8 0.664
YOX1 3 1 0.510

Med10Med21 - downregulated INO4 12 6 0.901
STB5 14 3 0.557

Med10Med21 - upregulated UME6 71 13 0.999
HSF1 29 9 0.994
HAP4 27 9 0.980
SKN7 93 17 0.904
SKO1 15 4 0.842
HAP3 13 3 0.519

Table 2. Gene set enrichment analysis. This table provides the results of the
gene set enrichment analysis conducted as outlined in section 4.3. First column: the
studied gene set (i.e., the Mediator subunit and the direction of expression change);
Second column: the number of genes in the whole population annotated to this TF;
Third column: the number of genes in the study set; Fourth column: the estimate for
this TF being enriched (cuto� for this study: 0.5).
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Figure 4.4. Traceplot of one MCMC run. Only the �rst 5000 MCMC steps are
shown, since the chain converges very fast to one �nal signals graph (see also section
S2.2). The left panel shows the traceplot for the sampled graphs (Θi)i=1,2,..., the right

panel shows the traceplot for the corresponding local maxima (Θ̂i)i=1,2,.... The MCMC
steps are depicted on the y-axis (from top to bottom), individual edges on the x-axis,
thus, one line in the traceplot corresponds to the signals graph of the corresponding
MCMC step. Black �elds indicate the presence, white �elds the absence of a given edge
in a given MCMC step. Completely black columns represent self-loops, which are de�ned
to be present in the mathematical formulation and included here for reasons of clarity.
Since various signals graphs can yield the same local maxima, the sampled graphs vary
strongly, while the local maxima vary slower and in a more restricted model space and
converge faster. This behavior has been discussed extensively in the main text.
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Figure 4.5. Traceplots of selected edges. The upper panel shows the traceplots
of selected edges in the sequence of local maxima (Θ̂i)i=1,2,..., the lower panel shows
the traceplot of these edges in the sequence of the underlying sampled signals graphs
(Θi)i=1,2,.... On the x-axis, extracts of the MCMC steps at the beginning (1− 1000) and
the end (59000 − 60000) of the chain are depicted. Selected edges (edges, that appear
in > 40 MCMC steps in the sequence of local maxima) are depicted in di�erent colors.
Stacked on the y-axis are values of 0 and 1 for each edge, corresponding to the absence
and presence of the edge at a given MCMC-step. The traceplots here show the same
behavior as has already been discussed in Fig. S4.4.
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Figure 4.6. Development of attachment entropy. For each e�ect j in each Empir-
ical Bayes step l, the Shannon Entropy is calculated as follows: −

∑
j∈S H

l
jk · log2H

l
jk.

On the y-axis, the Empirical Bayes steps are depicted (from top to bottom), on the
x-axis, the e�ects are listed. The colors indicate the entropy, relative to the maximal
one (when, for a given e�ect, the attachment probability is the same for any signal node
(or no signal node at all) ). Obviously, the overall entropy is already much lower in the
initial e�ects graph prior, compared to the simulation results. Furthermore, most e�ects
showing a high entropy in the �rst stop, converge to a preferred attachment very fast,
only few edges show no preferences.
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Figure 4.7. Clustering of Mediator subunits and genes based on (A) fold changes and
(B) log-odds ratios. Mediator subunits are colored according to Fig. 3 and Fig. 4.
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Figure 4.8. Mediator networks derived by MC EMiNEM (A) and hierarchical clustering
(B). Please note that unlike MC EMiNEM the clustering approach only yields undirected
edges. Edges (ignoring the direction) that appear in both networks are colored black,
MC EMiNEM speci�c edges are colored red and clustering speci�c edges are colored
green. In order to convert the hierarchical clustering of Fig. 4.7A into an interaction
graph we need to de�ne a cuto� level (i.e. maximum distance) below which two signal
nodes are considered as interacting. We have chosen this cuto� such that the number of
interactions (undirected edges, here: 7) is as close as possible to the number of directed
edges in our NEM (10 edges, Fig. 3). The need to de�ne a manually adjusted cuto�
is one of the major drawbacks of a clustering approach, making the results elusive and
arbitrarily. Furthermore, MC EMiNEM o�ers a more re�ned resolution, being able to
overcome the Mediator modules.
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5. MC EMiNEM - Intro

# load nem package
library(nem)
# load Mediator data
data(�NiederbergerMediator2012�);
lodsmat = NiederbergerMediatorLods;
nr_signals = ncol(lodsmat)
nr_e�ects = nrow(lodsmat)
# randomly create an initial signals graph
theta_init = matrix(sample(c(0,1),nr_signals^2,replace=TRUE,prob=c(1-1/nr_signals,

1/nr_signals),nrow=nr_signals,ncol=nr_signals); diag(theta_init)=1;
colnames(theta_init) = colnames(lodsmat);
rownames(theta_init) = colnames(lodsmat);
models = list();
models[[1]] = theta_init;
# calculate the data-driven prior
e�ects_prior = prior.EgeneAttach.EB(lodsmat)
# set the parameters
control = set.default.parameters(Sgenes=colnames(lodsmat), type="CONTmLLBayes",

mcmc.nsamples=5000, mcmc.nburnin=15000, Pe=e�ects_prior,
eminem.sdVal=ceiling(1.5*ncol(lodsmat)), eminem.changeHfreq=5000,
Pm.frac_edges=1/ncol(lodsmat), lambda=0.5);

# start estimation process and visualize results
net = nem(lodsmat, inference="mc.eminem", models=models, control=control);
plot(net);

A short introduction to MC EMiNEM is provided above (see the nem package vignette for more details).
It also lists all parameters that have to be set in order to run MC EMiNEM: type and inference de�ne
the method to be used (here: MC EMiNEM); Sgenes (the signal names) is de�ned by the input data; Pe
(the e�ects graph prior) and Pm.frac_edges (the sparsity prior) incorporate prior knowledge and are no
parameters in the proper sense; mcmc.nsamples (the length of the stationary phase), mcmc.nburnin (the
length of the burn-in phase), eminem.sdVal (the width of the proposal function) and eminem.changeHfreq
(the Empirical Bayes parameter) only in�uence the length of the Markov chain and its mixing properties,
i.e., as long as the chain is long enough, they do not a�ect the �nal distribution. Hence, the only
parameter that has to be adjusted is the weight of the sparsity prior lambda. As already discussed in the
Supplementary Section S2.2, the sparsity prior itself is important, but moderate variation of lambda did
not change the results qualitatively.
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