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MAP estimation with a log-barrier method

To find the MAP estimate we need to solve the following optimization problem

ŴMAP = arg max
W :w(1)≥0,w(t)−γw(t−1)≥0

{log p(Y |W ) + log p(W )} . (1)

The vector of differences [w(2)− γw(1); . . . ;w(T )− γw(T − 1)] can by written for convenience as a
matrix-vector multiplication DW , where the d(T − 1)× dT matrix D is defined as D = Dl⊗ Id and Dl

is a (T − 1)× T matrix with
[Dl]ij = −γδij + δi+1,j ,

where ⊗ denotes the tensor product, Id is an identity matrix with dimension d, and δkl the Kronecker
delta, i.e., δkl = 1 if k = l and 0 otherwise. More explicitly, D is a d × d-block diagonal matrix, where
each block (in the diagonal) is equal to Dl.

To enforce the inequality constraints we can use a log-barrier method [1] similar to that discussed
in [2]. Briefly, the idea behind a barrier method is as follows. The hard nonnegativity constraints are
introduced in the log-posterior function using a barrier function (in this case the logarithm) that becomes
infinitely negative when these constraints are violated. This term is also weighted by a positive scalar z.

Ŵz = arg max
W

{Lz(W )} , with Lz(W ) = log p(W |Y ) + z
(
1Td(T−1) log(DW ) + 1Td log(w(1))

)
(2)

Note that the logarithms in the barrier term on the right side of Eq. (2) are taken element-wise and
1d,1d(T−1) denote vectors of ones of dimensions given by the subscripts. Now for the given z we solve

the optimization problem and obtain a solution Ŵz. We then decrease z by dividing it with a constant
factor (e.g. 10) and solve again Eq. (2) for the new value of z using warm starts, i.e., using the previously
computed solution as the initial point. Each of these computed solutions lies on the interior of the feasible
set, i.e., all the nonnegativity constraints are satisfied with strict inequalities. The theory of interior point
methods guarantees that as z approaches to 0, the solution converges fast to the true MAP estimate [3]:

ŴMAP = lim
z→0+

Ŵz. (3)

Eq. (2) is strictly concave and twice differentiable and therefore can be efficiently maximized using
Newton’s method. Intuitively, at the (n + 1)-th iteration, Newton’s method approximates Lz(Wn) as
a quadratic function around the point Wn and then updates the estimate by moving Wn along the
direction that minimizes the quadratic approximation:

Wn+1 = Wn − tnH−1∇, (4)
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where H,∇ denote the value of the Hessian and gradient of Lz(W ) evaluated at the point Wn and the
stepsize tn ∈ [0, 1] is chosen to ensure that the objective increases on each iteration. The gradient and
the Hessian (computed at the point W ) are given by

∇ =
∂

∂W
Lz(W ) =

∂

∂W
log p(Y |W ) +

∂

∂W
log p(W ) + z

(
DT (DW ).−1 + w(1).−1

)
H =

∂2

∂W 2
Lz(W ) =

∂2

∂W 2
log p(Y |W ) +

∂2

∂W 2
log p(W )− z

(
DTdiag{(DW ).−2}D + diag{w(1).−2}

)
.

(5)

The Newton method requires only a few iterations to converge to the maximizer [1]. However, the
computation of the Newton direction H−1∇ at each iteration is computationally expensive step, since
it requires a matrix solve of size dT × dT , where d is the number of spline functions used. Because
of the state-space structure of the model, the Newton direction can be computed with cost O(d3T ) in
time and O(d2T ) memory requirement, using standard forward-backward schemes as discussed in [4].
By exploiting the tree-banded structure of B and the spatially and temporally localized nature of the
measurements, we can reduce the complexity to O(dT ), which allows us to apply our algorithm in trees
of arbitrary size. We next discuss the derivation of this approach.

Exploiting bandedness for computation of the Newton direction

As noted above, the most expensive step of our algorithm is the determination of the Newton direction
via H−1∇ (see Eq. (4)). The Hessian is symmetric and negative definite (since the log-posterior is strictly
concave). To examine the structure of the Hessian we look at the three terms in Eq. (5) separately. Since
the observations at each time t are instantaneous imaging measurements, they depend only on the state
variable at that time t. Thus, the first term of Eq. (5) contributes a block diagonal matrix to the Hessian.
The second term of the sum, because of the Markovian structure, contributes a block-tridiagonal matrix
to the Hessian [4]. Moreover, if we assume spatial independence between the activation parameters wi(t),
then each block of the tridiagonal-matrix is a diagonal matrix itself. For the third term of the Hessian
let spy(A) denote the set of nonzero entries of a matrix A, i.e.,

spy(A) = {(i, j) : [A]ij 6= 0} . (6)

Then
spy(DTdiag{(DW ).−2}D + diag{w(1).−2}) ⊆ spy(DTD) = spy((DT

l Dl)⊗ Id), (7)

where ⊗ denotes the tensor product and Id is an identity matrix of dimension d. From (7) we see that the
sparsity profile of the third term does not depend on the state variable W , but only on the Markovian
structure of our state-space model. Moreover,

spy(Dl) = {(i, i), (i, i+ 1), i = 1, . . . , T − 1} ⇒
spy(DT

l Dl) = {(i, j) : |i− j| ≤ 1, 1 ≤ i, j ≤ T} ⇒
spy(DTD) = {(i, j) : i− j = −d, 0, d, 1 ≤ i, j ≤ dT} .

(8)

Therefore this term of the Hessian contributes a block-tridiagonal matrix where each nonzero block is a
diagonal matrix. Thus we see that the Hessian is in general a block tridiagonal matrix:

H =


H1 Q1 0 . . . 0
QT1 H2 Q2 . . . 0

. . .
. . .

. . .

0 0 . . . HT−1 QT−1
0 0 . . . QTT−1 HT

 , (9)
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Such matrices can be efficiently inverted (using e.g. LDLT decomposition [5]) in O(d3T ) time and
space. In general, we may write H = LDLT , with

L =


I 0 . . . 0 0
L2 I . . . 0 0

0
. . .

. . .
. . . 0

0 0 . . . LT I

 , D =


D1 0 . . . 0
0 D2 . . . 0

0
. . .

. . . 0
0 0 . . . DT

 . (10)

These matrices satisfy the system of equations [5]:

D1 = H1

Dt−1L
T
t = Qt−1, t = 2, . . . , T

LtDt−1L
T
t +Dt = Ht, t = 2, . . . , T.

(11)

By denoting as A\b a solution of a system of linear equations Ax = b with respect to x, the Newton
direction x = H\∇ can be computed using the forward-backward recursion:

y(1) = ∇(1)

y(t) = ∇(t)− Lty(t− 1), t = 2, . . . , T

x(T ) = DT \y(T )

x(t) = Dt\y(t)− LTt+1x(t+ 1), t = T − 1, . . . , 1.

(12)

The computational complexity of the forward backward scheme scales linearly with time. The matrices
that we need to solve are the negative definite matrices Dt; therefore, in the worst case scenario, the
complexity of the algorithm is O(d3T ) in computational time and O(d2T ) in space requirement since the
matrices Dt, Lt need to be stored.

In our case this complexity can be further reduced by exploiting the tree structure and the fact that
the measurements are also spatially localized. Each block Ht on the diagonal of the Hessian is equal to
a diagonal matrix plus a component due to the measurements, equal to

∂2

∂w(t)2
log p(y(t)|w(t)) = BT

t E
−1
t Bt, (13)

where Bt is the measurement matrix at time t, and Et is the measurement noise covariance matrix at
time t, which is diagonal since the measurements are assumed to be independent.

As described above, the matrix B is constructed by the spatial discretization of the spline functions
fi. Since the functions fi have limited spatial support, every column of B, and thus the matrix B
itself, is sparse. In the simplest case where the cell consists of a single unbranched dendritic segment,
B is a banded matrix which allows for fast matrix vector multiplications and inversions [6]. In general,
we are looking at a full dendritic tree, and B is tree-banded, in the sense that Bic(j) = 0 if the i-th
compartment is sufficiently distant along the tree from the j-th bump center c(j). Note that similarly
to banded matrices, fast computations can also be performed with tree-banded matrices. For example,
matrix solvers can run in linear time by performing Gaussian elimination on individual branches starting
from the leaves and ending in the root [7]. Now each Bt is formed by choosing and scaling the rows of
B that corresponds to the compartments measured at each time, and thus remains tree-banded as well.
From Eqs. (8) and Eq. (13) it follows that each diagonal block of the Hessian Ht will also be tree-banded.

Apart from being tree-banded, the diagonal blocks Ht of the Hessian have also most of their energy
concentrated along their main diagonal. This is due to three reasons: First, the spline function attains
its maximum around its bump center, i.e., we expect [B]ic(i) > [B]jc(i) for i 6= j, where c(i) denotes
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Figure 1. Sparsity profiles of the LDLT decomposition at timestep t = 50. Logarithm of the
magnitude of the entries of matrices D50 (A) and L50 (C). The magnitude is plotted in a logarithmic
scale to demonstrate its rapid decrease away from the main diagonal. Sparsity profile and number of
non-zero elements for D50 (B) and L50 (D), after the adaptive thresholding. The components remain
approximately banded with most of their energy concentrated along the main diagonal.

the center of the i-th spline function. As a result, and since the measurements at each time step are
independent, the matrices BT

t E
−1
t Bt of (13) will have most of their energy along the main diagonal.

Second, the prior on each w(t) is spatially uncorrelated and therefore ∂2 log p(w(t))/∂w(t)2 is diagonal.
Third, the barrier term acts only on the temporal differences w(t) − γw(t − 1) and therefore has an
effect only on the main diagonal of the Hessian (see Eq. (8)). Now since the matrices Ht have most of
their energy concentrated along their main diagonal, apart from being tree-banded, it follows that their
inverses will also remain approximately banded with most of their energy concentrated on their main
diagonal. To see that consider the simple case of a tridiagonal matrix that is diagonally dominant. In
this case, its inverse has most of its energy in its main diagonal, and the magnitude of the entries falls
exponentially with their distance from the main diagonal. As a result it can be well approximated with
a banded matrix. Our case is a straightforward generalization of this result.

Now, with Ht and Ht−1 (approximately) tree-banded, and the off diagonal blocks of the Hessian Qt
diagonal (see Eq. (8)), it is easy to see that the matrices Lt, Dt in the LDLT recursion Eq. (11) can also
be approximated by tree-banded and banded matrices respectively. Consequently, all the matrices in
the forward-backward scheme remain approximately tree banded (with effective bandwidth that does not
depend on d) and therefore the computation of the Newton direction using the forward-backward scheme
of Eq. (12) can be practically computed in O(dT ) time. For similar reasons, the storage requirements of
the algorithm also scale linearly with d and T . Note that, as discussed above, we can relax the spatial
independence assumption on each w(t); imposing local spatial correlations in w(t) would again lead to a
tree-banded structure, albeit with slightly larger matrix bandwidth.

We illustrate the banded property of the LDLT decomposition in a simple setup where we are looking
at a single linear dendrite with d = 100 and T = 100. In this case, B and the diagonal blocks of the
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Hessian are banded matrices. Fig. 1 shows the magnitude (in a logarithmic scale) and sparsity profiles
of D50 and L50, from the LDLT decomposition recursion Eq. (11). As can be seen the energy of the
matrices is mostly concentrated on the main diagonal and therefore the matrices remain approximately
banded. Note that the matrices are only approximately banded and some thresholding is required to
make them sparse. In the case of the diagonal matrices Dt we perform adaptive thresholding on the
Cholesky factor of −Dt (each Di is negative definite), via the cholinc function in Matlab. The matrices
Lt are thresholded directly, since this direct thresholding of Lt will not impact the symmetry or negative
definiteness of LDLT , by construction.
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