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1 Experimental proof of concept

In recent years, synthetic biology efforts have produced a sizeable number of functional and characterized
elements, ranging from repressors and activators to modules such as the toggle switch, oscillator, and cell
communication systems. The Registry of Standard Biological Parts (http://partsregistry.org/) represents a
collection of such elements [1, 2]. As a proof of concept, here we present experimental results for two critical
components of the systems we aim to build. First, for cell-cell communications we engineered a mammalian
receiver based on the LuxR protein that responds to 3-oxo-hexanoyl-homoserine lactone (3OC6HSL). Second, we
employed two transcription factors, LacI and TetR, to create the toggle switch used in Systems 2-4 (Figures 3 and
4). The Weiss lab is currently developing two other modules needed for these systems: a mammalian 3OC6HSL
sender based on LuxI, and a module to direct stem cell differentiation into insulin-producing pancreatic β-
like cells. The differentiation module functions through stepwise expression of cell-fate regulators. Gata4
expression in stem cells stimulates differentiation into endodermal cells, which activates an alpha-fetoprotein
(AFP) promoter [3]. Preliminary results suggest that ngn3 and pdx1, when fused to the AFP promoter, stimulate
further differentiation into insulin-producing cells (data not shown).

1.1 Cell-cell communication

The mammalian receiver we built consists of a mammalian-optimized LuxR based signal transducer that binds
3OC6HSL and activates transcription from a novel mammalian optimized lux promoter (Figure S1A). We
designed the signal transducer by fusing a p65 activation domain from the mammalian ReLa protein [4] to
a helical linker H4 [5] and the N-terminus of a mammalian codon-optimized LuxRF, a hypersensitive LuxR
mutant [6]. We also appended a nuclear localization signal (NLS) to the C-terminus of this protein. To test
the redesigned receiver circuit (Figure S1A), HEK293FT cells were co-infected with a lentivirus constitutively
expressing p65-H4-LuxRF/DsRed2 and a lentivirus with EGFP under PluxO7 control, demonstrating a highly
functional mammalian 3OC6HSL receiver with an half maximal effective concentration (EC50) of roughly 10µM
(Figure S1B).

1.2 Toggle switch

Our toggle switch consists of two transcription factors, LacI and TetR (Figure S1C), that cross-repress each
other. We fused a Krupple associated box (KRAB) domain to each of the LacI and TetR proteins to ensure
efficient repression. The network design was based on earlier computational models [7] and an E. coli imple-
mentation [8]. Our experimental results indicate that the toggle switch state can be flipped with transient
administration of IPTG and aTc. The system is able to maintain long term stability (>3 days), and the time
required for the switch to reach 50% fluorescence is roughly 34 hours with the addition of aTc and 55 hours
upon IPTG induction (Figure S1D).

1.3 Experimental methods

E. coli XL10-Gold cells were used to clone and propagate plasmids (Agilent; Santa Clara, CA). Cells were grown
in LB broth (Difco, Detroit, MI) with 100µg/mL ampicillin (Sigma, St. Louis, MO) and 50 µg/mL kanamycin
(Shelton Scientific, Shelton, CT) when appropriate. AHL 3-oxohexanoyl-homoserine lactone (3OC6HSL) was
acquired from Sigma-Aldrich.

1.3.1 Mammalian cell culture

293-TetON (Clontech) cells were used to assay plasmids and viruses dependent on rtTA expression. NIH3T3 cells
(ATCC) were used to assay viruses and determine their titer. Polybrene (Sigma) was used at a concentration
of 10 µg/ml for infecting cells. All cells were grown at 37 ◦C and 5% CO2 in a sterile tissue culture incubator.
Media for culturing 293FT/NIH3T3 cells was composed of DMEM (Hyclone), 10% Tet-approved Fetal Bovine
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Serum (Clontech), 1% Penicillin-Streptomycin (Hyclone), and 0.1% Fungin (Invivogen) filtered through a 0.45
µ filter (Nalgene).

Lentivirus production and infection protocols were adapted from [9] using HEK293FT cells, packaging plas-
mids [10], and Superfect transfection reagent (Qiagen). Collected virus was concentrated either by ultrafiltration
using Centricon Plus-70 100 kDa spin filters (Millipore) or by ultracentrifugation at 50000 g for 2.5 hours.
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2 Methods for the ODE modeling of Systems 1-2 and related ana-
lytical results

In this section we discuss results related to analysis of the homeostasis system using ordinary differential
equations (ODEs). We first describe the tissue homeostasis system using a four-population ODE model, but
without any feedback control (termed “System 0”). We then show simulation results for the Systems 0, 1
(includes feedback) and 2 (includes toggle switch) with the four-population model and a corresponding two-
population reduced model, which is equivalent to System 2. In the reduced system, we prove that equilibrium
points exist under certain circumstances. We also show that the committed cell population remains robust to
variations of the killing rate, kk. The proofs are written in a general way and are valid for a broader scope than
the present application.

2.1 System 0: differentiation only

The simplest tissue homeostasis system involves a mechanism that causes cells to differentiate, which we describe
as the differentiation module. We model this system in terms of four cell types. Stem cells (population size
is S) grow at a constant rate kb and mature a constant rate kc1 into endodermic cells (E). Endodermic cells
mature into pancreatic cells (P ) at a rate kc2. Finally, pancreatic cells differentiate at a rate kd into β-cells (B),
which then die at a constant rate kk.

dS

dt
= kb · S − kc1 · S

dE

dt
= kc1 · S − kc2 · E

dP

dt
= kc2 · E − kd · P

dB

dt
= kd · P − kk ·B (S1)

For this system, a non-zero equilibrium exists only if kb = kc1, for any sized equilibrium population S0 > 0. Any
deviation of S0 · kb/kc1 results in unabated proliferation or depletion of S. Moreover, S0 and the equilibrium
β-cell population (B0 = S0 · kc1/kk) are sensitive to any deviation in kc1/kk.

We may also consider an external threshold on cell growth KS , for example representative of nutrient
limitations or contact inhibition:

dS

dt
= kb · S

KS

KS + S
− kc1 · S

dE

dt
= kc1 · S − kc2 · E

dP

dt
= kc2E − kd · P

dB

dt
= kd · P − kk ·B (S2)

This system yields a non-zero stable equilibrium at S0 = kb−kc1
kc1

KS , and B0 = S0 · kc1/kk, so long as kb > kc1.
Even if the stem cell population may be controlled in this scenario, B nevertheless remains highly dependent
on system parameters kb, kc1, and kk. Such sensitive systems represent incomplete solutions to the problem of
tissue homeostasis and are hardly ever observed in vivo; feedbacks ultimately remain critical components of a
robust homeostasis system.

2.2 Convergence and stability in Systems 1 and 2

In System 1, the combination of a long delay (low values of kc1, kc2 and kd) and a nonlinear feedback (large
n) induces undesirable oscillations. As discussed in the main text, reducing the delay in the feedback can
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suppress the oscillations, but even if we engineer feedback within intermediate maturing populations (e.g. E),
there realistically remains at least a two day delay. In System 2, including feedback through the toggle switch
addresses this issue. We examined the difference between feedback control from either the β-cell population
alone (System 1) or all committed cells together, i.e. endodermic, pancreatic and β-cells (System 2, see main
text). Figure S2 demonstrates that including all committed cells in the feedback signal can further stabilize
System 2 compared to System 1. To show the existence of a unique stable equilibrium point for System
2, we sampled all 625 combinations of five different initial values for each population (S ∈ {0.5, 1, 1.5, 2, 2.5},
{E,P,B} ∈ {0, 0.5, 1, 1.5, 2}) for 625 different parameter sets. All trajectories converged to the same equilibrium
point for a given parameter set.

2.3 Reduced two-population model

We reduce the ODE model from a four-population to a two-population abstraction in order to simplify global
stability analysis. We introduce the committed population as a variable C = E+P +B and reduce the system
to the two populations, S and C. Figure S2(third column) reveals consistent dynamics between the two- and
four- population models under certain parameter sets. We can describe the system of four populations as the
following:

dS

dt
= fb(S) · S − fc(S,C) · S

dE

dt
= fc(S,C) · S − kc2 · E

dP

dt
= kc2 · E − kd · P

dB

dt
= kd · P − kk ·B (S3)

where fb(S) represents the control of stem cell division as a function of the number of stem cells and fc(S,C)
represents the control of stem cell commitment as a function of the number of stem and committed cells. With
C = E + P +B, the second equation of (S3) is reduced to:

dC

dt
=
dE

dt
+
dP

dt
+
dB

dt
= fc(S,C) · S − kk ·B . (S4)

At steady state B, the β-cells population, can be expressed as the fraction of C. The following equations
describe the partition of the committed cells for a given equilibrium point (S0, C0 = E0 + P0 +B0):

E0 =
kdkk

kc2kd + kc2kk + kdkk
C0

P0 =
kkkc2

kc2kd + kc2kk + kdkk
C0

B0 =
kdkc2

kc2kd + kc2kk + kdkk
C0 (S5)

Although the fractional composition of C with regards to E, P and β-cells may change dynamically (Figure
S2), it remains a good approximation except for a short transient. Therefore, using the equilibrium populations
(S5), the system (S3) can be written as

dS

dt
= fb(S) · S − fc(S,C) · S

dC

dt
= fc(S,C) · S − kk · C , (S6)

where

kk =
kkkdkc2

kc2kd + kc2kk + kdkk
. (S7)
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2.4 Stability and convergence in the two-population model

The following section proves the existence of equilibrium points in a general system with two populations
and Hill-function feedbacks. With the relations in (S5), we can make a 1:1 correspondence between existing
equilibrium points of the two- and four-population systems. Nevertheless, initial transient responses may differ
between the models (see Figure S2).

In short, we prove that this system has a non-trivial stable equilibrium point when kb > kd. Moreover, at
this equilibrium, we have that S ≥ KS and B ≥ KB , provided that the parameters satisfy kd

kk
≥ 4KB

KS
. In the

case when the condition kb > kd fails, multiple non-trivial equilibria may exist; however, our system is monotone
[11, 12], which insures global convergence to equilibrium even in that case. KS and KB control equilibrium
population levels, and when kd > 4kk, B = KB . Note that the analytical results suggest the necessity of having
a nonlinear function for the feedback (Hill term), which could be biologically realized through cooperative
binding of the signaling elements or a signal cascade.

2.4.1 Model and statements of results

We consider the following general system of two differential equations defined for x = x(t) ≥ 0 and y = y(t) ≥ 0:

ẋ = f(x, y) = kb[1− θx(x)]x− kdθx(x)[1− θy(y)]x
ẏ = g(x, y) = kdθx(x)[1− θy(y)]x− kky (S8)

where kb, kd, kk are positive constants. In the reduced model that we are considering for tissue homeostasis, x
is the stem cell population, y the committed cell population and the constants correspond respectively to the
birth, differentiation and effective killing rates kk. The continuously differentiable functions

θx, θy : [0,∞)→ [0, 1)

are assumed to satisfy:
θ′x(x) > 0 and θ′y(y) > 0 for all x > 0, y > 0

and

θx(1) = θy(1) =
1

2
.

For the main conclusions, we will specialize to the normalized Hill functions:

θx(x) =
xnx

1 + xnx
(S9)

and

θy(y) =
yny

1 + yny
(S10)

where
nx ≥ 1 , ny > 0 . (S11)

With these functions, and for large nx and ny, we have that θx(x) ≈ 0 if x < 1 and ≈ 1 if x > 1, and
θy(y) ≈ 0 if y < 1 and ≈ 1 if y > 1. Thus, the first (growth) term in the definition of ẋ in (S8) will be zero
when the population x is larger than 1, while the second term, which represents the flux from the x to the y
population, will be only nonzero if both x > 1 and y < 1. Intuitively, one would expect a homeostatic behaviour,
which attempts to bring the value of y to a target of 1 while keeping the x population from extinction.

One could consider, more generally, functions θx and θy of the following form, with Vx, Vy,Kx,Ky not
necessarily equal to 1:

θ(s) =
V sn

Kn + sn
,

and replace the terms 1−θ(s) by V −θ(s). This more general situation corresponds to desired values of x ≈ Kx

and y ≈ Ky. We remark that the main conclusions also hold for this more general model. Indeed, (1) the
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coefficients Vx and Vy can be absorbed into the constants kb, kd, kk, and (2) rescaling x and y to, respectively,
Kxx and Kyy, we may take Kx = Ky = 1 without loss of generality, except that the parameter kd in the
equation for y has to be replaced by k′d = kdKS

KB
. However, our results below only rely upon the algebraic form

of the nullclines, the qualitative directions of the flow, and the location of the steady states. Such results remain
invariant when multiplying the equation for y by the constant kd/k

′
d. Thus, we may assume kd = k′d, provided

that we replace kk by kkkd
k′d

= kkKB

KS
. Note, that for the same reasons, we could as well make kk = 1, replacing

kb by kb/kk and kd by kd/kk.

The equilibria are the points at which the x and y nullclines:

X = {(x, y) | f(x, y) = 0} , Y = {(x, y) | g(x, y) = 0}

intersect. Note that there is always an equilibrium at x = y = 0. We are interested in nonzero equilibria.

The main results will be as follows; they are proved in the next section.

Lemma 2.1 The x nullcline X is the union of the line x = 0 and the graph of a strictly increasing and onto
function

ψ : [ξ,∞)→ [0,∞) ,

where

ξ := θ−1
x

(
kb

kb + kd

)
.

See Figure S3A; the arrows in the figure indicate the sign of the x-component of the vector field. Moreover:

• If θx is as in (S9) then ξ → 1 as nx →∞.

• ξ ≥ 1 if and only if kb ≥ kd.

• If θy is as in (S10) and ny > 1, then ψ has a vertical tangent at ξ.

• If both θx is as in (S9) and θy is as in (S10), then for large x the function ψ has the asymptotic form:

y = ψ(x) ≈ c1x
nx
ny with c1 =

(
kd
kb

) 1
ny

(S12)

Lemma 2.2 The y nullcline Y is the graph of a strictly increasing and onto function

γ : [0,∞)→ [0,∞) .

See Figure S3B; the arrows in the figure indicate the sign of the y-component of the vector field. Moreover:

• For all x:

γ(x) ≥ min

{
1,

kd
2kk

θx(x)x

}
and, in particular

γ(x) ≥ min

{
1,

kd
4kk

}
for all x ≥ 1 .

• If kb ≥ kd, then

γ(ξ) ≥ min

{
1,

kd
4kk

}
.

• If both θx is as in (S9) and θy is as in (S10), then for large x the function γ has the asymptotic form:

y = γ(x) ≈ c2x
1

ny+1 , with c2 =

(
kd
kk

) 1
ny+1

. (S13)
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These results suggest that the complete phase diagram is qualitatively as shown in Figure S3C. If there is
a unique positive equilibrium, as in the figure, then the direction of the arrows shows that every trajectory
starting from an initial condition with nonzero x(0) must converge to that positive equilibrium.

However, the figure is misleading. Figure S3D shows a situation where more than one positive steady state
exists. This example has θx as in (S9) and θy is in (S10), with nx = 2, ny = 1, and the following parameters:
kb = 0.15, kd = 4, kk = 0.04.

Thus, to prove that Figure S3C is indeed the correct picture, and global stability to a unique positive
equilibrium holds, we need to impose some constraints on parameters.

Corollary 2.3 If the following condition is satisfied:

kb ≥ kd ≥ 4kk , (S14)

then every equilibrium point (x, y) different from (0, 0) has the property that x ≥ 1 and y ≥ 1.

Corollary 2.4 If both θx is as in (S9) and θy is as in (S10), then there exists at least one positive equilibrium.

Corollary 2.5 In addition to the hypotheses of Corollary 2.4, suppose that kb ≥ kd and nx ≥ 2. Then, there
is at most one positive equilibrium.

We summarize as follows.

Theorem 1 Suppose that:

• θx is as in (S9) and θy is as in (S10),

• nx ≥ 2,

• kb ≥ kd.

Then, there is a unique positive equilibrium (x̄, ȳ). All trajectories, except for those starting with x(0) = 0,
converge to (x̄, ȳ). Moreover, if also

• kd ≥ 4kk

then x̄ ≥ 1 and ȳ ≥ 1.

Remark. It is worth noting that, if θx is as in (S9) and θy is as in (S10), then as nx, ny → ∞, the set Y
takes the limiting form shown in Figure S3E.

To be precise, we show that, as n → ∞, (1) for each fixed x < 1, γ(x, n) → 0 and (2) for each fixed x > 1,
γ(x, n) → 1. To verify (1), we pick any x < 1. As θx(x) → 0 when nx → ∞, also (kd/kk)θx(x)x → 0; since
G−1(0) = 0, we conclude as claimed. To show (2), we pick x > 1, and pick y so that G(y) = (kd/kk)θx(x)x.
If y > 1, then G(y) → +∞ (because θy(y) → 1) as ny → ∞, so for large enough ny, G(y) > (kd/kk)θx(x)x, a
contradiction. If instead y < 1, then 1−θy(y) ≈ 1, and thus (using that kd > kk, and thus also (kd/kk)θx(x)x ≈
(kd/kk)x > 1), as nx → ∞ we have that y ≈ G(y) ≈ (kd/kk)x > 1, contradicting the assumption y < 1. It
follows that y = 1 in the limit, as claimed. This means that, for large Hill exponents, one may expect the value
of y at nonzero steady states to be approximately 1.
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2.4.2 Proofs

Proof of Lemma 2.1

The set X is the union of the line x = 0 and the solution set of

kb(1− θx(x))− kdθx(x)[1− θy(y)] = 0 (S15)

and we are interested in characterizing this latter solution set. We may rewrite the above equation as

1− θy(y) =
kb
kd

1− θx(x)

θx(x)
=

kb
kd

(
1

θx(x)
− 1

)
. (S16)

A solution y = ψ(x) exists if and only if the right hand side is in the range (0, 1], which amounts to saying
(since

kb
kd

(
1

θx(x)
− 1

)
> 0

because θx(x) < 1) that
kb
kd

(
1

θx(x)
− 1

)
≤ 1 .

This property is equivalent to 1
θx(x) − 1 ≤ kd

kb
, that is,

θx(x) ≥ kb
kb + kd

= θx(ξ)

which is the same as asking x ≥ ξ. Thus y = ψ(x) is defined for x ≥ ξ. As both the left and right-hand sides
of (S16) are strictly decreasing functions of their arguments, it follows that ψ is increasing, and it is clearly
differentiable by the same reasoning. Note that ψ(ξ) = 0, by definition of ξ, and that ψ(x) → ∞ as x → ∞,
because θx(x) → 1 as x → ∞, which implies that the right-hand side of (S16) converges to zero, and thus
θy(y)→ 1.

The direction of the vector field is clear from the fact that, for any fixed y, the expression

1

θx(x)
− 1− kd

kb
[1− θy(y)]

is positive when x is very small and negative when x is very large.

Suppose that θx is as in (S9), and use here a subscript nx to indicate its dependence on nx. Pick any ε > 0.
There is uniform convergence θx,nx

(z)→ 0 for z ≤ 1− ε and θx,nx
(z)→ 1 for z ≥ 1 + ε as nx →∞. Therefore,

for each fixed number η ∈ (0, 1), it follows that 1− ε < θx
−1
,nx

(η) < 1 + ε Since ε was arbitrary, this means that

θx
−1
,nx

(η)→ 1 as nx →∞. In particular, applied to η = ξ, we have that ξ → 1 as nx →∞.

Observe that, kb ≥ kd if and only if kb
kb+kd

≥ 1
2 = θx(1). Thus, since θx is an increasing function, kb ≥ kd if

and only if ξ = θ−1
x ( kb

kb+kd
) ≥ θ−1

x (θx(1)) = 1, as claimed.

We next show that if θy is as in (S10) and ny > 1, then ψ has a vertical tangent at ξ. Taking implicit
derivative with respect to x and then a limit as x↘ ξ and y ↘ 0 in (S16), we have that:

ψ′(x) → 1

θ′y(0)

kb
kd

θ′x(ξ)

θx(ξ)2

as x↘ ξ, and therefore this limit is +∞ if θ′y(0) = 0.

The asymptotic form of the nullcline, for large x, when both θx is as in (S9) and θy is as in (S10), is shown
as follows. The equality in (S16) becomes:

1

1 + yny
=

kb
kd

1

xnx
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which means that

ψ(x) =

(
kd
kb
xnx − 1

) 1
ny

≈ c1x
nx
ny

with c1 =
(
kd
kb

) 1
ny

.

This completes the proof of Lemma 2.1.

Proof of Lemma 2.2

The y nullcline set Y consists of the solutions of

G(y) =
y

1− θy(y)
= (kd/kk)θx(x)x .

The function G is continuous and strictly increasing (because θy is strictly increasing), G(0) = 0, and G(y)→∞
as y →∞. Therefore G is invertible, and thus Y is the graph of the strictly increasing function

y = γ(x) = G−1((kd/kk)θx(x)x)

which clearly satisfies that γ(0) = 0. As x→∞, θx(x)→ 1, so θx(x)x→∞, which implies that γ(x)→∞ as
well.

The direction of the vector field is clear from the fact that

g(x, y) = kdθx(x)[1− θy(y)]x− kky > 0

if and only if
G(y) < (kd/kk)θx(x)x

which is the same as y < γ(x), and that the expression is < 0 if and only if y > γ(x).

We claim that:

γ(x) < 1 if and only if γ(x) >
kd
2kk

θx(x)x .

Indeed, suppose that y = γ(x), that is y
1−θy(y) = (kd/kk)θx(x)x. Note that y < 1 is equivalent to θy(y) < 1/2,

which is the same as y
1−θy(y) < 2y. Thus

y < 1 if and only if 2y >
kd
kk
θx(x)x

as claimed. It follows that

γ(x) ≥ min

{
1,

kd
2kk

θx(x)x

}
.

In particular, when x ≥ 1, θx(x) ≥ 1/2, so θx(x)x ≥ 1/2 and therefore kd
2kk

θx(x)x ≥ kd
4kk

If in addition kb ≥ kd, then ξ ≥ 1 by Lemma 2.1, and thus γ(ξ) ≥ min
{

1, kd4kk

}
.

Finally, suppose that θx is as in (S9) and θy is as in (S10). We have that y = γ(x) must satisfy:

y + yny+1 =
kd
kk

xnx+1

1 + xnx

When x → ∞, also y → ∞, so kd
kk

xnx+1

1+xnx ≈ kd
kk
x and y + yny+1 ≈ yny+1. Therefore, y ≈ c2x

1
ry+1 with

c2 =
(
kd
kk

) 1
ry+1

as x→∞ (and so also y →∞).
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Proof of Corollary 2.3

When kb ≥ kd, Lemma 2.1 insures that ξ ≥ 1 and Lemma 2.2 insures that γ(ξ) ≥ min
{

1, kd4kk

}
. Thus, if also

kd ≥ 4kk, it follows that γ(ξ) ≥ 1. Given the forms of the nullclines for x and y, any equilibrium should have
x ≥ ξ ≥ 1. Thus y = γ(x) ≥ γ(ξ) ≥ 1.

Proof of Corollary 2.4

By Lemma 2.1, the function ψ that describes the nontrivial branch of the x nullcline is defined for x ≥ ξ > 0,

with ψ(ξ) = 0, and has the asymptotic form ψ(x) ≈ c1x
nx
ny . By Lemma 2.2, the function γ that describes the

y nullcline has γ(0) = 0 and has the asymptotic form γ(x) ≈ c2x
1

ny+1 . To show a nonzero intersection between
the graphs of these two functions, it suffices to know that ψ(x) > γ(x) for some x. This is clear because, for
some positive constant c:

ψ(x)

γ(x)
≈ c

x
nx
ny

x
1

ny+1

= c x
nx
ny
− 1

ny+1 → ∞ as x→∞

since nx

ny
− 1

ny+1 > 0 (using nx ≥ 1 and ny > 0).

Proof of Corollary 2.5

We must show that there is only one intersection of the zero sets of

kb(1− θx(x)) = kdθx(x)[1− θy(y)]

and
kdθx(x)[1− θy(y)]x = kky .

We can equally well replace the second equation by:

kb(1− θx(x))x = kky .

Thus, it is enough to show that the graphs of these two functions:

α(x) =
kb
kk

(1− θx(x))x

β(x) = θ−1
y

(
1− kb

kd

[
1

θx(x)
− 1

])
(defined for x ≥ ξ, where, as before, θx(ξ) = kb

kb+kd
) intersect at only one point. Since β is a strictly increasing

function defined for x ≥ ξ ≥ 1 (this last inequality uses that kb ≥ kd), with β(0) = 0 and α(x) > 0 for all
x, it is sufficient to show that α′(x) ≤ 0 for x ≥ 1. Indeed, [1 − θx(x)]x = x

1+xnx , so α′(x) vanishes only at

x = x̄ = (nx − 1)−1/nx and is negative for x > x̄. Since nx ≥ 2, nx − 1 ≥ 1, from which it follows that x̄ ≤ 1.
Thus, as required, α′(x) ≤ 0 for x ≥ 1 ≥ x̄.

2.5 Robustness to the rate kk

We present an informal argument to estimate the order of the dependence of the steady state on the degradation
rate kk of y, when all other parameters are kept constant. This is an important property of the homeostasis
system as y, the committed cell population should be independent of external perturbations. We assume that
θx is as in (S9) and θy is as in (S10) and that we are in the asymptotic regime. The nullclines have the forms
in (S12)-(S13):

ψ(x) ≈ c1x
nx
ny with c1 =

(
kd
kb

) 1
ny
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γ(x) ≈ c2x
1

ny+1 , with c2 =

(
kd
kk

) 1
ny+1

.

At equilibrium, ψ(x) = γ(x) gives that x has order kk
p and therefore y = c1x

nx
ny has order kk

q, where

p =
ny

ny − nxny − nx
, q =

nx
ny − nxny − nx

.

If nx = ny = n, these simplify to p = q = −1/n. For example, with nx = ny = 4, we expect that x and y will
grow like kk

−1/4.

2.6 Simulations

We show next nullclines and simulations for these values:

kb = 3, kd = 2, n = 4,

and kk varying by 3 orders of magnitude:

kk = 0.001, 0.01, 0.1, 1 .

Shown below are simulations for x(t) and y(t) (with initial states x(0) = 0.3, y(0) = 0), followed by the
respective x and y nullclines, for values of kk respectively as above. Observe the very weak dependence of the
steady state values x̄ and ȳ on the rate kk, consistently with their order being kk

−1/4, since 0.001−1/4 ≈ 5.6,
0.01−1/4 ≈ 3.16, 0.1−1/4 ≈ 1.78, and 1−1/4 = 1.
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kk = 0.1:
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3 Methods for the Langevin modeling of Systems 2-4

We perform chemical Langevin simulations [13] of the various system designs (Figures 3D-F, 4) and use these
implementations to perform various analyses (Figures 5, 7 and 8). We add modulated white noise to each
reaction at each integration step, with noise amplitude controlled by the parameter Ω. We refer to Ω as ‘cell
volume’, because it relates concentration to molecular count. For example, a volume of 200 denotes that a
particular molecule’s concentration of 1 (which is the average value for most of the active components in our
models) corresponds to a total of 200 molecules per cell. All the equations in the following are written as ODE
to lighten the notation, but are simulated as chemical Langevin equations [15]. For example, for an ODE system
written as

d X

dt
=

m∑
j=1

νjrj(X) ,

where X is the concentration of the different species, νj the stoichiometric vector corresponding to the j-th
column of the stoichiometric matrix and rj the rate function of the j-th reaction. The increment of X for a
time interval τ using the corresponding chemical Langevin equation will be

X(t+ τ) = X(t) +

m∑
j=1

νjrj(X) τ +

m∑
j=1

νj

√
rj(X)

Ω
τ Nj ,

where Nj ∼ N (0, 1) is a normal random variable with mean 0 and variance 1. Note that for the calculus of
rj(X), we used a multiple state procedure as described in [14] for a higher precision.

We aim to optimize the systems such that the number of committed cells remains constant. We define
the objective function as the signal to noise ratio S/N of the fraction of committed cells ρc in a simulation of
duration T :

S/N =
ρc√

1/T
∫ T

0
(ρc(t)− ρc)2

dt
where ρc = 1/T

∫ T

0

ρc(t)dt (S17)

Note that the fraction of committed cells is similar in all systems due to the quorum sensing module (see
Sec. 3.1) and therefore, the S/N value is not biased by large difference in ρc between different systems. S/N
measurement begins after simulations have been allowed to somewhat equilibrate (generally after 500 hours of
simulation).

The following sections detail the equations for Systems 2 to 4. Table S1 summarizes the parameter values for
the three systems. We approximate the evolution of each component in each model (Figures 3-4) to follow a Hill
kinetic with a coefficient of n = 4. kαp and Hα denote the maximum rate and half-rate constant, respectively, for
the component α. Degradation follows mass-action kinetics (rate kαd ) for all components. Finally, we describe
diffusion as a linear function (rate kdiff) of the difference between internal and external (AI) concentrations.
We constrain the maximum number of cells in the simulation (Nmax) to be less than 150.

3.1 Quorum sensing module

In Systems 2-4, uncommitted cells signal through AI1. The toggle switch, comprised of R6 and R7 cross-
inhibition, regulates I1 expression. I1 subsequently controls AI1 production. R7, which is produced only in
committed cells, inhibits AI1 production. In contrast, R6, which is produced only in uncommitted cells, inhibits
the signal for committed cells (AI2). We approximate AI1 and AI2 as being directly dependent upon R6 and
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R7, and we describe the concentration of these components according to the following equations:

d AI1

dt
= kAI1p

Hn
AI1

Hn
AI1 +R7n

−kAI1d AI1

+kdiff(AI1out −AI1) (S18)

d AI2

dt
= kAI2p

Hn
AI2

Hn
AI2 +R6n

−kAI2d AI2

+kdiff(AI2out −AI2) (S19)

The following equations describe the homogeneous extracellular AI concentration:

d AI1out
dt

= −
∑
Cells

kdiff

Nmax
(AI1out −AI1Cells)

−kAI1d AI1out (S20)

d AI2out
dt

= −
∑
Cells

kdiff

Nmax
(AI2out −AI2Cells)

−kAI2d AI2out (S21)

The equilibrium concentrations in uncommitted cells of AI1 and AI2, AI1 and resp. AI2, for given popu-
lation sizes ρu and ρc can be evaluated assuming that the production rate in eq. (S18) and (S19) is either zero
or maximal (kAIαp ) depending on the state of each cell. If the size of both cell populations is expressed as a

fraction of Nmax: ρu = Nu

Nmax
for uncommitted cells and ρc = Nc

Nmax
for the committed cells, AI1 and AI2 can

be written as:

AI1(ρu, ρc) =
kAI1p

kAI1d

(kAI1d + kdiff)(kAI1d + ρukdiff) + ρckdiffk
AI1
d

(kdiff + kAI1d )(kdiff + kAI1d + ρukdiff + ρckdiff)
(S22)

AI2(ρu, ρc) =
kAI2p

kAI2d

ρck
2
diff

(kdiff + kAI2d )(kdiff + kAI2d + ρukdiff + ρckdiff)
(S23)

The production of the component A1 (or for System 4, the repressor R1) is controlled by the receptor Rec1
to which AI1 binds. Similarly, AI2 binds to Rec2 and activates the production of the repressor R2. In this
model, we simplify the expressions of A1/R1 and R2 as depending directly on the concentration of AI1 or AI2
following a Hill-type equation. In all systems, the half-rate constants for the production terms of A1/R1 and R2
within the population control modules, is adjusted to trigger the cell-decision processes for a threshold of the
fraction of uncommitted cells ρu around 0.45 and of committed cells ρc around 0.4. It means that the half-rates
are equal to AI1(ρu = 0.45, ρc = 0.4) for A1/R1 production and AI2(ρu = 0.45, ρc = 0.4) for R2 production as
defined above. Therefore,

d A1

dt
= kA1

p

AI1n

Hn
A1 +AI1n

with HR1 = AI1(0.45, 0.4)

−kA1
d A1 for Systems 2 and 3 (S24)

d R1

dt
= kR1

p

Hn
R1

Hn
R1 +AI1n

with HR1 = AI1(0.45, 0.4)

−kR1
d R1 for System 4 (S25)

d R2

dt
= kR2

p

Hn
R2

Hn
R2 +AI2n

with HR2 = AI2(0.45, 0.4)

−kR2
d R2 (S26)
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3.2 AND gate and toggle switch

The AND gate integrates the information from the two quorum sensing modules (and the oscillator or the
throttle in Systems 3 and 4, respectively). The AND gate in Systems 3 and 4 include an activator A3, and
System 3 also includes an additional repressor (R4). R5 serves as the output and interacts with downstream
modules (e.g., the toggle switch in Systems 2-4). The System 2 AND gate only contains R5, which we describe
by the following equation:

d R5

dt
= kR5

p

A1n

Hn
R5−1 +A1n

Hn
R5−2

Hn
R5−2 +R2n

−kR5
d R5 (S27)

In System 3, the AND gate includes two additional elements (A3 and R4):

d A3

dt
= kA3

p

A1n

Hn
A3−1 +A1n

Hn
A3−4

Hn
A3−4 +R4n

−kA3
d A3 (S28)

d R4

dt
= kR4

p

Hn
R4

Hn
R4 +Ro2n

−kR4
d R4 (S29)

d R5

dt
= kR5

p

A3n

Hn
R5−3 +A3n

Hn
R5−2

Hn
R5−2 +R2n

−kR5
d R5 (S30)

In System 4, the throttle acts on R5 through the signaling molecule AI3. Furthermore, System 4 includes
A3:

d A3

dt
= kA3

p

Hn
A3−1

Hn
A3−1 +R1n

Hn
A3−2

Hn
A3−2 +R2n

−kA3
d A3 (S31)

d R5

dt
= kR5

p

A3n

Hn
R5−3 +A3n

Hn
R5−t

Hn
R5−t +AI3n

−kR5
d R5 (S32)

The toggle switch consists of the two repressors, R6 and R7, which inhibit each other. Cells initially have
the toggle in the uncommitted state, with high R6 and low R7. R5 controls toggle switching by inhibiting R6.
The equations for R6 and R7 are the following:

d R6

dt
= kR6

p

Hn
R6−5

Hn
R6−5 +R5n

Hn
R6−7

Hn
R6−7 +R7n

−kR6
d R6 (S33)

d R7

dt
= kR7

p

Hn
R7

Hn
R7 +R6n

−kR7
d R7 (S34)

The equation for R7 differs for System 4, and is discussed below.

3.3 Cell fate

We describe uncommitted cells as potentially proliferative and immortal. In contrast, committed cells cannot
grow but rather die. We model the control of proliferation in uncommitted cells using growth arrest factor
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(GAF ), which is regulated by quorum sensing activity. We model differentiation as potentiated by the expression
of a transcription factor such as GATA4. Once above a certain threshold, GATA4 initiates slow cell death as
approximated by a kinetic model described below.

3.3.1 Division process

GAF is controlled by A1/R1 (quorum sensing of the uncommitted cells):

d GAF

dt
= kGAFp

A1n

Hn
GAF +A1n

−kGAFd GAF for Systems 2 and 3 (S35)

d GAF

dt
= kGAFp

Hn
GAF

Hn
GAF +R1n

−kGAFd GAF for System 4 (S36)

The cell grows if GAF lies below a threshold thGAF . To model growth, we use an integrator for the division
depending on GAF level,

d Div

dt
= kbΘ(thGAF −GAF )− kb

3
Θ(GAF − thGAF )

with Div = 0 at the time at cell division and Θ represents the Heaviside function (Θ(x) = 0 if x < 0 and
Θ(x) = 1 if x ≥ 0). kb denotes the division rate. We choose kb = 1

96h
−1, such that the average time for

division (in absence of GAF ), is set to 96h. Division occurs when Div(t) ≥ 1. The two daughter cells inherit
all concentrations of the mother cell’s components except Div, which is reset to zero.

3.3.2 Commitment process

R6 inhibits GATA, and GATA production begins when the toggle switches to low R6:

d GATA

dt
= kGATAp

Hn
GATA

Hn
GATA +R6n

−kGATAd GATA (S37)

When GATA concentration reaches a threshold, the cell becomes differentiated and no longer proliferates. We
describe the lifetime of committed cells by the following:

d Death

dt
= kk

with Death = 0 at the time of differentiation and kk denotes the death rate. A cell dies when Death reaches 1.
We choose kk = 1

200h
−1, such that the average time for the death of a β-cell is set to 200h.

3.4 System 3 – implementation of an oscillator

To break symmetry between individual cells in the population, oscillations are introduced through a relaxation
oscillator with a design similar to previous experimental studies in prokaryotic and eukaryotic cells [16, 17, 18, 19,
20, 21]. The simplest possible oscillator is made of a component Ao that activates itself (autopositive feedback)
and regulates the expression of a repressor Ro that inhibits Ao. Two successive components integrate oscillator
dynamics with the AND gate. A second repressor Ro2 acts on R4, which in turn represses commitment. With
proper parameter values, this system generates short intervals of low R4, with an irregular latency where R4
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concentration remains high. The equations of the oscillator are as follows:

d Ao

dt
= kAop

(
kAo0 +

Aoscn

Hn
Ao−A +Aon

)
Hn
Ao−R

Hn
Ao−R +Ron

−kAod Aosc (S38)

d Ro

dt
= kRop

Aon

Hn
Ro +Aon

−kRod Ro (S39)

d Ro2

dt
= kRo2p

Aon

Hn
Ro2 +Aon

−kRo2d Ro2 (S40)

Linking the oscillator and the quorum sensing module to the toggle switch occurs in two steps as described
above. The element A3 is controlled by both A1 and R4, therefore A3 is produced only when A1 is high (enough
uncommitted cells) and R4 is low.

3.5 System 4 – implementation of a throttle

We implement a throttle design involving a third quorum sensing molecule, AI3, as another mechanism to inhibit
the simultaneous commitment of cells in a population. We design the activator At to control the production of
AI3, such that AI3 is produced transiently when the toggle is switching. AI3 diffuses through the membrane
and gives rise to an external concentration AI3out that enters other cells. The throttle equations are as follows:

d At

dt
= kAtp

Hn
At−6

Hn
At−6 +R6n

−kAtd At (S41)

d AI3

dt
= kAI3p

Atn

Hn
AI3−t +Atn

Hn
AI3−7

Hn
AI3−7 +R7n

−kAI3d AI3

+kdiff(AI3out −AI3) (S42)

d AI3out
dt

= −
∑
Cells

kdiff

Nmax
(AI3out −AI3Cells)

−kAI3d AI3out (S43)

The remaining elements are similar to System 2, except for two key differences: first, the addition of A3 (see
Eq. S31 and S32), and second, the control of R7 by At instead of R6:

d R7

dt
= kR7

p

Atn

Hn
R7 +Atn

−kR7
d R7 (S44)

3.6 Spatial simulations

We implement spatially resolved multicellular simulations using the Langevin model to analyze spatiotemporal
commitment patterns (discussed further in Supplementary Text 5.4). We represent the spatial distribution of
individual cells in a manner similar to that employed in the Gillespie-simulations (discussed in the following
section). The extracellular volume of the system is divided into a 6x5x5 grid with Nmax = 150 boxes, each with
the same volume as a cell. Each cell occupies one box on the grid. Diffusion can occur between the cell and
its box or between the boxes. As diffusion is physically faster than any other process in the cell, we simulate
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it as an ODE without the Langevin noise term. Diffusion occurs from one edge to edge (periodic boundary
conditions) in order to mimic a larger system and avoid border effects. A dividing cell can push neighboring
cells into the nearest empty box; therefore, daughter cells are adjacent at time of division.



Synthetic biology design, SI 20

4 Methods for the Gillespie modeling of Systems 2-3

In addition to the Langevin model, we implement more mechanistically detailed models of Systems 2 and 3
that do not make quasi-steady-state assumptions for many of the network components. We use these models
primarily for analysis of hysteresis in the UPC module (see section Clustered sensitivity analysis in the main
text), but also use the Gillespie models to confirm several results observed in the Langevin simulations (including
patterning analysis). We use a standard rate-equation approach and monitor the spatiotemporal evolution of
cells, proteins, and signaling molecules with a Gibson-modified Gillespie algorithm. We describe the full tissue
homeostasis system as a set of discrete stochastic reactions occurring in cells using a previously described
multicellular spatiotemporal simulation environment [22, 23]. The simulation platform tracks the temporal
evolution of intracellular reactions within individual cells that grow on a 2D grid, as well as the spatiotemporal
evolution of the cells themselves and extracellular signaling molecules that diffuse among them. We model
cell growth as a stochastic buildup of a species “Volume” that triggers cell division upon reaching a threshold.
We model growth inhibition as the binding of GAF to a “Volume” precursor, thereby inhibiting “Volume”
accumulation. “Volume” levels divide with cell division, and newly created cells form adjacent to their parents
on the 2D grid. If needed, neighboring cells are “pushed” to adjacent grid positions in order to make room for
newly divided cells.

4.1 Gene network design

The overall designs of Systems 2 and 3 are generally similar to the Langevin implementations in network
topology (Figure 3-4) but contain more details about the receptor and the UPC model (Figure S4).

We model repressors and activators binding to a gene’s promoter, thus changing transcription and translation
rates. Repressors such as TetR-KRAB fusion protein and activators such as VP16-AraC fusion protein fit this
model and have been previously implemented in mammalian synthetic genetic networks [24]. Our model of
engineered cell-cell communication in a mammalian system is based on bacterial two-gene QS systems, such as
rhlI/rhlR in Pseudomonas (P.) aeruginosa [25] and luxI/luxR in Vibrio (V.) fischeri [26]. QS systems have
previously been used in synthetic gene networks to engineer cell-cell communication in both bacteria [27] and
mammalian cells [28]. Generally, one protein (LuxI or RhlI, modeled generically as I1 and I2) catalyzes synthesis
of a freely diffusing small molecule, known as an autoinducer (AI), specific to a particular QS system (modeled
here as AI1 and AI2). A receptor protein (LuxR or RhlR, modeled generically as Rec1 and Rec2) binds the
appropriate intracellular autoinducer. The resulting complex acts as an activating transcription factor similar
to activators described above, and is engineered to reach high concentration when population density reaches a
“QS threshold.” Other artificial signaling pathways, for example those previously engineered in yeast [29], may
also be implemented. As with the Langevin models, the proposed circuit design can be described in terms of six
key modules: “Uncommitted Population Control” (UPC), the “Oscillator”, the “Committed Population,” the
“AND” gate module, the “Toggle Switch” module, and the “Differentiation” module (see Figure 4A). Model
reactions and rates are listed in Table S3.

The following section discusses the genes that comprise these modules and qualitatively discusses system
dynamics. Each of the fourteen individual genes comprising the genetic modules belong to one of five categories:
quorum sensing (QS) genes, repressors, activators, growth arrest factor, and cell-fate regulators. As discussed
in the main part of the paper, repressors and activators are referred to generically as (Ro, Ro2,...) and (Ao,
A3,...). QS molecular species adapted to a mammalian host from gram-negative bacterial communication are
referred to as LuxR homologues (Rec1 and Rec2), LuxI homologues (I1 and I2), and cognate autoinducers
(AI1 and AI2).

4.1.1 The UPC Module

In the UPC module, population control of uncommitted cells is controlled through a cell-cell communication
system involving two proteins, I1 and Rec1. I1 catalyzes synthesis of AI1, which diffuses freely across cell
membranes and acts as an intercellular biochemical signal. AI1 binds Rec1, a receptor protein. The resultant
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complex is an activating transcription factor (Rec1.AI1) that can bind specifically engineered promoters of
various genes [30]. In our system, Rec1.AI1 binds the promoter of I1, causing activated transcription of that
gene. The positive feedback in I1 expression produces nonlinear response to increasing AI1, ultimately leading
to a step-like function in Rec1/I1 expression as population density increases. Within the UPC module, Rec1.AI1
binds the promoter for growth arrest factor (GAF) and activates its transcription when uncommitted population
density is above the QS threshold. Once cells commit to differentiation via switching of the toggle switch
(discussed later), expression of I1 is inhibited by R7. This repression allows I1 expression, and consequently
AI1 concentration, to be reflective only of uncommitted population density.

4.1.2 The Committed Population

With the switch to commitment and to high R7 expression, gene I2 is no longer repressed by R6. I2 catalyzes
synthesis of AI2, which binds Rec2 to form the complex Rec2.AI2. Rec2.AI2 activates both I2 and Rec2
expression through a double-positive feedback mechanism. As with the Rec1/I1 QS system used in the pop-
ulation control module, positive feedback creates a sharp gain in AI2 production as the population density of
committed cells increases.

4.1.3 Symmetry Breaking Oscillator

To break symmetry between individual cells in the population, oscillations are introduced through a relaxation
oscillator with a design similar to previous experimental studies in prokaryotic and eukaryotic cells [16, 17, 18,
19, 20, 21]. Ao activates expression of itself and two repressors, Ro and Ro2. Ro in turn represses Ao expression.
Ro and Ro2 are activated as Ao levels increase. Ro subsequently represses further expression of Ao and, as
Ao levels decrease, Ro expression is inactivated. As Ro levels fall to a sufficiently low level (due to inactive
transcription), Ao again is freely expressed. Ro is modeled as a slowly degrading protein to maximize oscillation
period, and Ro2 is designed as a relatively fast decaying protein to minimize periods of high Ro2.

4.1.4 The AND Gate

The AND gate module regulates the commitment of individual cells to differentiate. Rec1.AI1 interfaces with
the commitment module through binding the A3 promoter and activating A3 expression. A3 expression is high
only when the uncommitted population is high (Rec1.AI1 is bound to the A3 promoter at high levels) and the
oscillator peaks (Ao is high). Ro2 output from the oscillator (high when Ao is high) represses R4, which in
turn represses A3. Even when bound by Rec1.AI1, A3 expression is repressed when R4 is bound. A3 activates
expression of the repressor R5. R5 subsequently interacts directly with the toggle switch. The “committed
population” module interfaces with the AND module through Rec2.AI2 activation of Ro2. Ro2 represses R5
expression regardless of whether A3 is bound to the R5 promoter. Ro2 is high when the population of committed
cells is high, thereby repressing further commitment. R5 expression is activated only when (1) uncommitted
population density is high, (2) the oscillator is high, and (3) committed population density is low.

4.1.5 The Toggle Switch

The toggle switch defines whether an individual cell is uncommitted or committed. The bi-stable toggle switch
consists of two mutually inhibitory repressors: R6 and R7. High expression of one repressor inhibits expression
of the other. The switch is initially set to high R6 levels in uncommitted cells. This can be accomplished in
engineered systems through the introduction of an inducer that inactivates R7. For example, if R7 was LacI,
transient addition of IPTG would stably set the toggle switch to high R6. When the AND module output
is high, R5 represses R6 expression, thus allowing R7 to be expressed. R7 then represses R6, stabilizing the
toggle switch in the high R7 state. To increase the bi-stability of the switch, multiple repressor binding sites
are incorporated into each of the promoters of the switch. The transition from high R6 to high R7 expression
in the toggle switch signifies commitment to differentiation. R7 represses I1 expression in the UPC module,
causing repression of AI1 expression.
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4.1.6 The Differentiation Module

With the switch to commitment, subsequently low R6 levels allow differentiation to occur through unrepressed
expression of cell fate regulators. For differentiation into pancreatic β-cells, for instance, the unrepressed cell
fate regulator could be an endoderm-directing cell fate regulator such as Gata4. In order to describe Gata4
as inducing differentiation into endoderm cells, cells are modeled as having a one way toggle switch involving
the factors that sustain either the undifferentiated or differentiated state. As a cell-fate regulator, Gata4 is
modeled as inducing the switch from the undifferentiated to differentiated state. Because differentiated cells
exhibit significantly lower growth rates and higher death rates as compared to stem cells, differentiated cells
are modeled as accumulating killer protein (“E”) and being unable to grow. When killer protein levels reach a
given threshold, the cell dies.

Differentiation may be successfully directed if guided by stepwise expression of various cell-fate regulators
at critical points in the differentiation pathway. Promoters have been identified which are only active in certain
cell types. For example, the Alpha-FetoProtein promoter (pAFP) is only active in cells that have differentiated
into endoderm cells. Such promoters could be used for the sequential expression of key transcription factors
at specific points along the differentiation pathway. As described in this circuit, the pancreas specific cell-fate
regulator genes pdx1 and ngn3 are fused downstream of pAFP. Thus once the cell reaches the endoderm stage,
pdx1 and ngn3 expression is activated, and differentiation is further directed into a β-cell fate.
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5 Methods for results analyses of Systems 2-4

5.1 RS-HDMR sensitivity analysis

RS-HDMR is a tool to deduce non-linear interactions between a set of inputs and an output [31]. In this work, we
use RS-HDMR in multiple distinct applications. RS-HDMR describes the independent and cooperative effects
of n parameters x = (x1, x2, ...xn) on an output, y = f(x), in terms of a hierarchy of RS-HDMR component
functions:

f(x) = f0 +

n∑
i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + ...+ f12...n(x1, x2, ...xn) (S45)

Here f0 represents the mean value of f(x) over the sample space, the first-order component function fi(xi)
describes the generally non-linear independent contribution of the ith input variable to the output, the second-
order component function fij(xi, xj) describes the pairwise cooperative contribution of xi and xj , and further
terms describe higher order cooperative contributions. In this work, we generally consider first-, second-, and
third-order RS-HDMR component functions. We approximate RS-HDMR component functions as weighted
orthonormal basis functions, which take the following form:

fi(xi) ≈
k∑
r=1

αirϕ
i
r(xi) (S46)

where k is an integer (generally ≤ 3 for most applications), {α} are constant weighting coefficients to be
determined, and the basis functions {ϕ} are optimized from the distribution of sample data points to follow
conditions of orthogonality [31]. Basis functions are approximated here as non-linear polynomials, where

ϕi1(xi) = a1xi + a0 ϕi2(xi) = b2x
2
i + b1xi + b0 ϕi3(xi) = c3x

3
i + c2x

2
i + c1xi + c0 (S47)

The coefficients a0,a1,b0,...c3 are calculated using Monte Carlo integration under constraints of orthogonality,
such that when integrated over all data points,

∫
ϕr(x)dx ≈ 0 ∀ r

∫
ϕ2
r(x)dx ≈ 1 ∀ r

∫
ϕp(x)ϕq(x)dx ≈ 0 (p 6= q) (S48)

Optimal basis functions are weighted by coefficients (αir), which are calculated from least-squares regression.
Only inputs and their respective component functions measured as significant by the statistical F -test were
included in RS-HDMR expansions [32]. The resultant expansion in Eq. S45 serves both as a predictive model of
network response due to its parametric interactions and as a statistical representation of the underlying system.

The relative strength of response to parametric changes can be quantitatively determined through sensitivity
analysis based on the respective RS-HDMR component functions. A global sensitivity analysis may be calculated
from the RS-HDMR expansion through a decomposition of the total variance σ2 of an output species, f(x), into
hierarchical contributions from the individual RS-HDMR component functions. For each RS-HDMR expansion,
the total sensitivity/variance σ of the output f(x) is decomposed into hierarchical contributions (σi, σi,j , . . .)
from the individual RS-HDMR component functions of the remaining input variables:

1 =

n∑
i=1

Si +
∑

1≤i<j≤n

Sij + ...+ Sε (S49)

In Eq. (51), Si = σ2
i /σ

2 is defined as the sensitivity index of the corresponding RS-HDMR component function,
fi(xi). Sij = σ2

i,j/σ
2 is the sensitivity index of the corresponding second-order component function, fij(xi, xj).

Sε is the sensitivity index of the residual variation of the model. The collection of sensitivity indices Si,
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∑n
j 6=i Sij ,

∑n
j 6=i
∑n
k 6=i,j Sijk corresponding to first, second, and third order component functions of the input

variable xi can then be summed into an index STi (i = 1, 2...n), describing both independent and higher-order
effects of xi on an output. The magnitudes of STi (i = 1, 2, ..., n) can be used to quantify the relative interaction
strength between the outputs and the inputs.

5.2 Langevin model analysis

5.2.1 Time-scale optimization

Time-scale optimization involves multiplying rate constants by a scalar TS parameter while preserving the
ratio of closely related rates (see Table S1). We scale the rate kp (production rate), kd (degradation rate)
and kdiff (diffusion rate) of all components in the quorum signaling module by a factor TSQS ∈ [ 1

3 , 3]. We
perform analogous scaling for the quorum sensing module (TSQM ∈ [ 1

3 , 3]). For the commitment module, we
independently analyze three individual components. TSR5 ∈ [ 1

3 , 3] scales kR5
p and kR5

d . TSR6 ∈ [ 1
3 , 3] and

TSR7 ∈ [ 1
3 , 3] denote analogously lumped parameters. For System 4, we include an additional parameter for the

dynamics of the component At (TSAt ∈ [ 1
3 , 3]). For Systems 2 & 3, we analyze five total time-scale parameters.

We analyze six time-scale parameters in System 4 (see Table S2). We randomly sample the time-scale space
from a log-uniform distribution over one order of magnitude for each parameter, ultimately generating 360
independent parameter sets (Figure S5). For each time-scale set, we average the observed S/N over eight
simulations. We perform RS-HDMR analysis to map the input-output relationships between the time-scale
parameters (inputs) and their corresponding S/N, the output (Figure 5C-F). We excluded 30% of the dataset
to cross-validate RS-HDMR inference and used the remaining 70% of the data as the training set. RS-HDMR
inference results indicated consistent fitting accuracy between the test and training sets.

5.2.2 Robustness to variations of molecular noise amplitude

To test the influence of stochastic fluctuations in the models, we changed the volume from 40 to 1400 as shown
in Figures 5A and S6. For each value of Ω, 24 simulations are performed and the average S/N value is recorded.
Error bars in these plots indicate standard deviation of the results for the 24 simulations.

5.2.3 Robustness to variation of the killing rate kk

To test the influence of the killing rate in the models, we change the value of kk from 45 to 550 hours (corre-
sponding to a ratio kb/kk of 0.5 to 6) as shown in Figures 5B and S6. For each value of kk, 24 simulations are
performed and we record the average S/N value and the average committed population density. Error bars in
these plots indicate standard deviation of the results for the 24 simulations.

5.2.4 Module optimization

We randomly and independently modified twelve parameters involving the oscillator in System 3 (Figure 7A),
and nine parameters involving the throttle in System 4 (Figure 7G), to understand the impact of parameter
variation on module properties and, ultimately overall S/N. We randomly sampled the parameter space from
a log-uniform distribution, one order of magnitude around the nominal values for each parameter (see Table
S1). We generated 2000 independent parameter sets for the oscillator and roughly 6000 parameter sets for
the throttle. For each parameter set, we simulated system behavior with the Langevin models and recorded
the observed S/N value (average of 16 independent simulations). We also performed simulations where the
module is isolated from the system and focus on different phenotypes of the module. For System 3, we isolate
the oscillatory module (Figure 7A) and record the properties for the R4 component (output of the module) as
described in Figure 8A and Table S4. For System 4, we isolate the throttle (Figure 7G) by analyzing the toggle
response (AI3 and R7 concentrations) to independently (exogenously) modulated inputs of A3 (signal from the
QS modules) and AI3 (signal from adjacent cells), as shown in Figure 8F. For the isolated throttle, produced



Synthetic biology design, SI 25

AI3 is kept separate from the input of AI3 and therefore does not act on R5. We focus on changes in R7
and AI3 concentrations in response to exogenously controlled combinations of A3 and AI3 as inputs (see Table
S5). For the oscillator, each tested parameter set yields a single value for each phenotype. In contrast, we test
the isolated throttle with combinations of different A3 and AI3 inputs. Therefore, for each throttle parameter
set, we obtain a 2-dimensional grid for each phenotype with 11 sampled values of A3 (0.07, 0.16, . . . , 0.97)
and 18 sampled values for AI3 (0.06, 0.12, . . . , 1.08). These input values were chosen based on A3 and AI3
concentrations observed in the full system simulations.

We performed several types of analysis on both Systems 3 and 4 to understand the relationships between
the module rate constants, the module phenotypes, and corresponding S/N of the full system (Figures 7, 8 and
S7-S14). We perform RS-HDMR analysis using either rate constants, module phenotypes, or both as inputs to
describe the system output, S/N. Because throttle phenotypes are described as a function of two inputs (A3
and AI3), we describe the two-input functions (“images”) of each phenotype (see Figures S13-S14) as a set of
features (see Table S6). For features extracted using regionprops(), images were thresholded at various levels,
digitized accordingly, and then analyzed. regionprops() calculates properties such as “Centroid,” and “Filled
Area” for the region of an the image falling above a particular threshold; we used both relative thresholds,
such as > 90% max value, and absolute thresholds for this analysis. For features extracted using graycoprops,
images were first converted to gray-level co-occurrence matrices. Overall, we extracted roughly 10,000 features
from the original 16 phenotype images. We performed partial least squares regression (PLSR, plsregress(),
Matlab, Natick, MA) using the 10,000 features as inputs, and ranked features by their variable importance in
the projection (VIP) [33]. The 20 most significant variables were then analyzed by RS-HDMR. Table S4 shows
the most significant features identified by RS-HDMR. Even with the reduced number of features, RS-HDMR
inference performs with roughly equal or better accuracy compared to partial least squares regression in all
cases tested.

We used Bayesian network analysis to produce graphical representations of the conditional probabilistic
dependencies of the module rate-constants and phenotypes on each other and on overall S/N. Directed graph
structures produced by Bayesian network inference consist of “nodes”, which in this application are the module
phenotypes and S/N, and “edges”, which represent conditional probabilistic relationships between the nodes.
Bayesian network inference was performed as described previously [34]. Briefly, we derived consensus directed
graph structures from exact Bayesian network model averaging over all directed acyclic graph (DAG) structures
having at most four parents per node [35, 36]. Consensus networks for Systems 3 and 4 (Figure 9) only include
those edges with a score > 0.8 and > 0.3, respectively, where an edge score of 0.8, for example, denotes that
80% of the derived Bayesian networks tested over all iterations of optimization include that edge. Although
our implementation of Bayesian inference cannot capture cyclical feedback, bi-directional edges can be observed
with model averaging when using a significance threshold below 0.5. The bi-directional edges reported in System
4 (Figure 9B) arise from observation of both edge directions above the 0.3 threshold. For System 3, we ranked
phenotypes and rate-constants by their VIP score after performing PLSR as referred to above, and analyzed the
top 15 most significant rate-constants and phenotypes using Bayesian inference. For System 4, we analyzed the
9 most significant module phenotypes (as determined by their VIP), along with all 9 module rate-constants. For
both systems, we only considered DAGs with directed edges from module phenotypes to the “S/N” node (i.e.,
we defined module phenotypes as strictly upstream of S/N), and we specified rate-constants as strictly upstream
of both the module phenotypes and S/N. From these constraints, we consequently inferred directionality from
the remaining edges. We iteratively removed nodes that were not upstream of S/N in the consensus network,
and recalculated the consensus network structure. As a result, the final network structures are comprised of S/N
and only those nodes upstream of S/N at the chosen significance threshold. Prior to network inference, nodes
were discretized using two, three, and four-level k-means clustering with squared Euclidean distance metric
and 50 iterations. Bayesian inference results across the three types of k-means clustering were then averaged.
Software used for Bayesian network inference has been previously described [35].

5.3 Analysis of a two-compartment ODE model of the UPC module

We implement the full model (Systems 2 and 3) as a system of discrete stochastic reactions using an established
multicellular, spatiotemporal simulation platform [22, 23] (see section 4). Because computational costs of
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running this platform are high, we can turn to a simpler simulation framework for high-throughput sampling
and optimization of rate-constants within individual subnetworks of the full system model. We employ a
deterministic, two-compartment ordinary differential equation (ODE) model of the UPC module for efficient
genetic algorithm (GA) optimization and sensitivity analysis of a portion of the full system stochastic model.
(See the following page for specific equations and a table of rate constants.) Intracellular reactions of the
ODE system use identical rate constants to those in the stochastic model, with the standard correction for
dimerization reactions [37]. We approximate individual cells within the population as identical to reduce the
complexity of the ODE system. We model diffusion as occurring between a variable population density and a
homogeneous extracellular volume, thus neglecting the effect of spatial signaling gradients. Using kdiff as the
rate of diffusion across a cell membrane, kc as the rate of AI decay, and ρp as the population density of cells in
the culture, concentration of AI outside of the cell ([AIout]) is described by the following equation:

d [AIout]

dt
= ρpkdiff ([AIin]− [AIout])− kc [AIout] (S50)

where [AIin] represents the concentration of AI within the cells. As with the stochastic simulator, cell density
and concentration of species within cells are approximated as uniform. In the ODE model, we also approximate
the concentration of extracellular AI as homogeneous. We describe diffusion in and out of individual cells as
independent of population density (at least explicitly, by exclusion of ρp), such that

d [AIin]

dt
=
∑
i

fin(x) + kdiff ([AIout]− [AIin])− kc [AIin] (S51)

where
∑
i fin(x) represents the sum of all i = 12 intracellular reactions described on the following page and in

Table S6.
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d [pI1]

dt
= k2 [pI1.Rec1.AI1] + k3 [pI1.Rec1.AI1]− k1 [pI1] [Rec1.AI1]

d [pRec1]

dt
= 0.0

d [LuxI]

dt
= k0 [pI1] + k4 [pI1.Rec1.AI1]− k10 [LuxI]

d [Rec1]

dt
= k9 [pRec1]− k11 [Rec1]− k7 [Rec1] [AI1in] + k8 [Rec1.AI1]

d [AI1in]

dt
= −k7 [Rec1] [AI1in] + k8 [Rec1.AI1] + k5 [LuxI]

−k6 [AI1in] + k17([AI1out]− [AI1in])

d [Rec1.AI1]

dt
= k7 [Rec1] [AI1in]− k8 [Rec1.AI1]− k3 [Rec1.AI1]

+k2 [pI1.Rec1.AI1]− k1 [pI1] [Rec1.AI1]

−k15 [pA2] [Rec1.AI1] + k16 [pA2.Rec1.AI1]

d [pI1.Rec1.AI1]

dt
= −k2 [pI1.Rec1.AI1] + k1 [pI1] [Rec1.AI1]− k3 [pI1.Rec1.AI1]

d [pA2]

dt
= −k15 [pA2] [Rec1.AI1] + k16 [pA2.Rec1.AI1] + k3 [pA2.Rec1.AI1]

d [pA2.Rec1.AI1]

dt
= k15 [pA2] [Rec1.AI1]− k16 [pA2.Rec1.AI1]− k3 [pA2.Rec1.AI1]

d [A2]

dt
= k12 [pA2] + k13 [pA2.Rec1.AI1]− k14 [A2]

dρp
dt

= k34

d [AI1out]

dt
= k17ρ([AI1in]− [AI1out])− k6 [AI1out]

5.3.1 Genetic algorithm

For the GA optimization, parameter vectors in initial generations consist of random points within biologically
reasonable ranges of parameter space. To calculate the “forward QS response” in the ODE model, initial
ρp = 0 and ρp increases at rate k34 that is much slower than other reactions in the system, such that module
output, defined as [pA2.Rec1.AI1], maintains quasi-steady-state. The “reverse QS response” in the ODE
model is similarly calculated, but using the initial value ρp = 1, and having the population decrease at rate
dρp/dt = −k34. The cost function for the GA defines the forward and reverse responses of [pA2.Rec1.AI1] as
a function of ρp to be a least-squares fit to a three component step function, described in the main text. Over
1000 generations (100 individual parameter vectors to a generation), system behavior evolves from a relatively
flat response to a more optimal digital-like step function response.

5.3.2 RS-HDMR analysis of hysteresis

We use RS-HDMR to understand the impact of parametric variation on system performance in the two-
compartment model of the UPC module. Input-output relationships are defined as the effects of parametric
variation on hysteresis of the UPC module response to fluctuations in population density. More specifically, we
define hysteresis as the difference between the forward and reverse response values of population density (ρp),
where the UPC module’s output ([pA2.Rec1.AI1]) is 50% of maximum, or (max output + min output)/2. We
focus on absolute levels of hysteresis rather than normalizing to the average population density threshold, be-
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cause we focus on systems with similar average thresholds and consider absolute changes in population density
to be a relevant optimization feature of our system in the context of its biomedical application.

We performed RS-HDMR sensitivity analysis on datasets describing neighborhoods of parameter space
around optimal parameter vectors obtained from GA runs. We generated two sets of 75 GA optimizations:
the first set considered both the forward and reverse QS responses to changing population density, and the
second set only considered forward response. Random sampling around each optimal parameter vector was
from a normal distribution N(µ, σ) where µ is the optimized parameter’s value and σ = µ/20. Empirical
evidence suggested that significantly broader sampling resulted in too many parameter sets that did not yield
QS behavior. Sample size of the training set was 2000, and the resultant model was tested on unsampled points
for validation purposes. In this application, we only considered the first-order RS-HDMR component functions
in order to perform efficient high-throughput analyses of local parameter “neighborhoods.”

5.4 Patterning and Neighbor Density Analysis

We analyzed distances between pairs of committed and uncommitted cells to identify patterning between the
two cell-types. For a given committed or uncommitted reference cell, the ratio of committed to uncommitted
neighbors at a given distance was calculated for all distances. We define p(c)i,d,t as the observed fraction
of committed cell neighbors at distance d for the ith cell at time t. The normalized score Z(c)i,d,t for that
observation is then described by

Z(c)i,d,t =
p(c)i,d,t − µt

σi,t
(S52)

where µt represents the overall fraction of committed cells at time t and σi,t describes the standard deviation
of the observed probability given by the standard form:

σi,t =

√
µt(1− µt)

ni,t
(S53)

where ni,t is the number of total neighbors observed for the ith cell at time t. Normalized Z-scores are combined

into an average Z-score, Z(c)d, for each distance value,

Z(c)d =
∑
i

∑
t

Z(c)i,d,t/
√
Nd (S54)

where Nd is the total number of sample Z-scores Z(c)i,d,t for each distance. In Figures S18 and S19, the

“Z-score” metric refers to Z(c)d.
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6 Additional results

6.1 Detailed results for time-scale analysis

With the results of the time-scale analysis (see the section Intermodular time-scale in main text), we selected
individually optimized values for Systems 2–4. The optimized parameter values below are an average of the
10% top performing parameter sets tested.

TSQS TSQM TSR5 TSR6 TSR7 TSAt
System 2 2.31 1.14 1.29 1.67 1.24 –
System 3 2.14 0.91 1.08 1.84 1.11 –
System 4 1.95 0.88 1.38 1.54 0.72 1.01

Such parameter optimization increases system performance and robustness to variations in the killing rate kk
and the cell volume Ω (Figure S6). On average, the optimization affords a gain of 5 units for the S/N value in
all systems for all conditions. The major qualitative difference is the ability of the time-scale optimized System
4 to function even with low molecular noise (Ω > 1000) in a comparable way to System 3. Results can be
compared to Figure 5A-B in the main text.

6.2 Detailed results for the oscillator and throttle module analyses

We employ RS-HDMR to predictively model the relationship between module rate-constants, phenotypes, and
overall system performance (see Figures 7 and 8). RS-HDMR infers and predicts precise S/N values with
little accuracy when only the module rate-constants are employed as predictive variables (Figure S10A,C).
R2 ≈ 0.5 for the analysis of both Systems 3 (Figure 8E) and 4 (Figure 8I). This relatively poor fit arises from a
highly uneven distribution of observed S/N values (>50% of parameter sets have S/N<2) and what are likely
to be significant higher (greater than third) order RS-HDMR component functions, which we do not account
for in this application. Nonetheless, RS-HDMR can classify system performance as ‘good’ or ‘bad’ based on
the rate-constants alone with an area under the ROC-curve (AUROC) of 0.97 (we define ‘good’ performers
as parameter sets with observed S/N > 15 and ‘bad’ ones as parameter sets with S/N < 2). When module
phenotypes are used to classify system performance (Figure S10B,D) in the same manner, RS-HDMR predicts
with AUROC>0.98 for both Systems 3 (Figure 8E) and 4 (Figure 8I). Prediction with both the rate-constants
and module phenotypes marginally improves this accuracy to an AUROC>0.99 for both systems. This trend
in accuracy mirrors the R2 values reported Figure 8E,I, where inference using module phenotypes generally
out-performs inference using rate-constants alone. To compare RS-HDMR classification accuracy with another
algorithm, we also implemented SVM classification using MATLAB (R2009a, The MathWorks, Natick, MA),
with a two-norm soft-margin SVM classifier and linear kernel. For both Systems 3 and 4, RS-HDMR outperforms
SVM in classification accuracy in the three scenarios (rate-constants only, phenotypes only, and rate-constants
and phenotypes combined).

6.3 Population size when varying β-cell killing rate

In the previous section describing the ODE model (section 2), we found three important results concerning the
sensitivity of the population to variations of the β-cell killing rate (kk). First, the population of uncommitted
cells is well controlled and remains constant even for low ratio of division rate over killing rate (kb/kk). Second,
for high ratio, the population of committed cells follows a power law with an exponent 1/n where n is the Hill
coefficient in the feedback function. Third, for low ratios, on the contrary, the population decreases linearly
with the killing rate. It means that the population of committed cells follows a power law with exponent 1
when plotted against the ratio of division over killing rates.

The results of simulations with the ODE model with two populations (see section 2.5) are consistent with
these theoretical results (Figure S17). For an ODE model with a Hill coefficient n = 16, the uncommitted
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population is very robust to variations of the killing rate. The committed population is also robust (exponent of
0.07, close the theoretical value 1/n = 0.0625) for high ratio, but follows exactly a linear dependence (exponent
of 1.00) for high killing rate.

But more interestingly, the results of the stochastic simulations with the Langevin model are qualitatively
similar (Figure S17). If the three systems show small differences for low ratio kb/kk, the fits of System 2 – which
is the closest to the ODE model and have power laws with exponents 0.06 and 1.14 for respectively high and
low ratio. These values are very close to both the theoretical analysis and the ODE simulations of the simplified
model.
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