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1. Optimal synaptic weights  

To find the optimal synaptic weights, we must define the criteria for 

optimality (i.e., the cost function). It is reasonable to assume that the optimal synaptic 

weights would minimize the movement error and the motor effort, wherever a target 

appears in the task space. Mathematically, the aim is to find the synaptic weights that 

minimize the expected value of the weighted sum of the error cost and the motor 

effort cost: 
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with the condition that the mean (m) and covariance matrix (C) of target τ are:  
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Because the error cost (Je) can be represented as Je = ½(Bτ)
T
Bτ using B = MW – I  


22

, the expected value of the error cost can be written as: 
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The expected value of the motor effort cost (Jm) can be written as: 
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It is now apparent that the Moore-Penrose pseudoinverse (M
+
  

n2
) of M is the 

optimal solution that minimizes the cost function E[J] among the many solutions 

satisfying zero error, for the following two reasons. First, since B = MW – I = MM
+
 – 

I = 0, E[Je] becomes 0. Second, the 1st column vector ( (1)

M ) of M
+
 is the solution 

with the smallest Euclidean norm among the many solutions of W(1)  
n1

 that 

satisfy the equation (1)

1

0

 
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MW , and the 2nd column vector ( (2)

M ) of M
+
 is the 

solution with the smallest Euclidean norm among the many solutions of W(2)  
n1

 

that satisfy the equation (2)

0

1

 
  
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MW . Therefore, E[Jm] is also minimized, because 

E[Jm] is represented as the sum of squares of the elements of the two vectors W(1) and 

W(2) in Eq. (A4). 

 

2. Mathematical proof of convergence 

In this section, we prove that the synaptic weight matrix W converges to the 

pseudoinverse of the matrix M if the synaptic weights are modified by the 

feedback-with-decay rule (Eq. (3) in the main text) in the linear neural network model 

(Figure 1B). W at the (t+1)
th

 trial can be written as: 
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This equation can be averaged to give:  
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where C = E[τ(t)τ(t)
T
].  

 

2.1. Uniform presentation of targets 

If we assume that the targets are presented randomly and uniformly in space, 

C becomes cI  
22

 (c = 0.5, if the eight targets in Figure 1A are used) and Eq. (A6) 

becomes:  
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we can express Eq. (A7) as follows: 

 ( 1) ( )E t t  W QW R       (A9) 

Thus, W(t) at the t
th

 trial can be generally written as: 
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where λ1 and λ2 are the eigenvalues of the symmetric matrix M
T
M, as the number of 

trials approaches infinity (t → ∞), 

t Q 0         (A12) 

if the following conditions are satisfied: 
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Because α, λ1, and λ2 are positive values, the conditions in (A13) can be more simply 

written as follows: 
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Furthermore, under these conditions, as the number of trials approaches infinity (t → 

∞): 

 1 2 1( )t t       Q Q Q I I Q     (A15) 

From (A10), (A12), and (A15), as t → ∞: 
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When cα » β, W(t) converges to M
T
(MM

T
)
-1

, which is the Moore-Penrose 

pseudo-inverse of M. Taken together, the conditions for convergence to the 

Moore-Penrose pseudo-inverse are:  
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The conditions in (A17) are satisfied, because α = 20, β = 1.0  10
-4

, c = 0.5, λ1 = 

0.0036, and λ2 = 0.00072. 

 Although we have proven the convergence of W for the 2-dimensional task, 

the proof also holds true for 3-dimensional or much higher-dimensional tasks. For a 

D-dimensional task, W  
nD

 converges to the Moore-Penrose pseudo-inverse of M 

 
Dn

 under the following conditions: 

1

2

2

2

2

0

D

c

c

c

c

 

 

 

 

 
  


  


 

      (A18) 

 

2.2. Non-uniform presentation of targets 

If the distribution of the targets is not uniform in space, C does not take the 

form cI  
22

. A transformation is conducted as follows: 

ˆ( ) ( )t tτ σVτ       (A19) 

where V = (v1v2) is a matrix that consists of the eigenvectors of the matrix C, and  
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where λ1 and λ2 are the eigenvalues. Then, ˆ ˆ ˆ( ) ( )TE t t   C τ τ  becomes I  
22

, if 

there are at least two target vectors that are linearly independent.  

In addition to the targets, the MDVs must be transformed in the same 

manner, ˆ M σVM . When the synaptic weights from the new input vectors ˆ( )tτ  to 
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the actuators are defined as Ŵ  and the output vectors as T̂ , the transformed 

network has the same form as the original network. Therefore ˆ ( )tW  converges to the 

pseudo-inverse of M̂ :  

1ˆ ˆ ˆ ˆ( ) ( )T Tt W M MM      (A21) 

By substituting ˆ M σVM  into Eq. (A21), we obtain:  
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Because the original W is expressed as:  

ˆW WσV        (A23) 

W(t) converges to the Moore-Penrose pseudo-inverse of M as follows: 
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2.3. “Feedback-only” rule 

Here, we mathematically assess where the synaptic weight matrix W(t) 

converges if the decay is not incorporated. As has been already shown, W(t) at the t
th

 

trial can be written as: 

1 2( ) (0) ( )t t tt       W QW Q Q Q I R   (A10) 

If the decay is not incorporated (i.e., β = 0), Q
t
 is expressed as follows: 
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where λ1 and λ2 are the eigenvalues of the symmetric matrix M
T
M and the matrix V (= 

(v1 v2 … vn)) consists of the eigenvectors of the symmetric matrix M
T
M. When (A14) 

is satisfied, as the number of trials approaches infinity (t → ∞): 
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Thus, (0) (0)AW W , which means that A never increases |W(0)|. As for the 

second term of Eq.(A10), as the number of trials approaches infinity (t → ∞): 
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When β = 0, it converges to M
T
(MM

T
)
-1

. Taken together, the synaptic weight matrix 

converges as: 

1( ) (0) ( ) ( )T Tt t  W AW M MM    (A28) 

Finally, MW(t) converges on: 
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Because M can be decomposed using singular value decomposition as follows: 
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where the matrix U (= (u1 u2)) includes the eigenvectors of the symmetric matrix 

MM
T
. Therefore, MAW(0) is calculated as: 
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Because V is a matrix containing the eigenvectors of the symmetric matrix M
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M, V is 

an orthogonal matrix satisfying V
 T

 V = I. Therefore, it is further calculated as: 
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Note that AW(0) itself is not 0 and depends on the initial synaptic weight W(0), but it 

always satisfies MAW(0) = 0, irrespective of the initial synaptic weight matrix. From 

(A29) and (A31), as t → ∞: 

( )t MW I        (A32) 

Thus, the converged weight matrix produces zero error for the arbitrary target τ  

because it always satisfies  T MWτ τ .  

In summary, by the “feedback-only” rule, the synaptic weight matrix W(t) 

converges with a different matrix depending on the initial synaptic weight matrix (i.e., 

W(t)AW(0) + M
T
(MM

T
)
-1

), while the converged weight matrices always satisfy MW 

= I and hence produce zero error for the arbitrary target.  

 


