
Text S1

Special cases of the joint calling framework

As described in Methods, given N samples and M SNPs, the joint calling framework computes Pr (Gm
n |I,S)

— the posterior probability of the three genotypes for sample n at SNP m, conditional upon intensity
data I and sequence data S. This general computation uses sequence data, intensity data, and linkage
disequilibrium (LD) to call genotypes. Omission of one or more of these data types produces special cases
of the framework that are similar in principle to previously described algorithms.

Omission of sequence data and LD

Computation of Pr (Gm
n |I) without LD assumes that genotypes for different SNPs are independent. There-

fore, SNP genotypes do not depend on intensity data from nearby SNPs and the calculation reduces to
Pr (Gm

n |Im). SNP array genotyping algorithms, many of which have been described previously, compute
this quantity. The Birdseed algorithm [1] uses an Expectation-Maximization (EM) algorithm closely
analogous to that used by the full framework described in the Methods section.

Omission of intensity data and LD

Computation of Pr (Gm
n |S) without LD reduces to computation of Pr (Gm

n |Sm
n ). Sequence genotype calling

algorithms such as the Unified Genotyper in the Genome Analysis Toolkit [2], which we used to obtain
sequence genotype likelihoods for our experiments, compute this quantity.

Omission of intensity data

Computation of Pr (Gm
n |S) with LD allows omission of the M-step from the full framework. The algorithm

reduces to a single phasing and imputation step given the initial sequence likelihoods Pr (Sm
n |Gm

n ). This
previously proposed technique [3] was used to produce calls for the 1000 genomes project [4].

Omission of sequence data

Computation of Pr (Gm
n |I) with LD closely parallels the full computation of Pr (Gm

n |I,S) in the full
framework. The modified E-step and M-step are:

E-step The E-step computes

Q(θm|θm(t)) = EG|I;θm(t) [log L (θm; I,G)] (1)

=
∑

n

3∑
i=1

Pr
(
Gm

n = i|I; θm(t)
)

[log πm
i + log f (Im

n ;µm
i ,Σm

i )] , (2)

where Pr
(
G|I; θm(t)

)
is computed by a haplotype phasing and imputation algorithm.
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M-step The parameters µm, Σm, and πm are updated with

θm(t+1) = arg max
θm

Q
(
θm|θm(t)

)
,

which yields

πm(t+1) =
1
N

N∑
n=1

Pr
(
Gm

n |I; θm(t)
)

µ
m(t+1)
i =

∑N
n=1 Pr

(
Gm

n = i|I; θm(t)
)
Im
n∑N

n=1 Pr
(
Gm

n = i|I; θm(t)
)

Σm(t+1)
i =

∑N
n=1 Pr

(
Gm

n = i|I; θm(t)
) (

Im
n − µ

m(t+1)
i

) (
Im
n − µ

m(t+1)
i

)>
∑N

n=1 Pr
(
Gm

n = i|I; θm(t)
)

The BeagleCall algorithm performs a very similar computation, albeit with a different probabilistic model
for intensity data [5].

Omission of LD

Computation of Pr (Gm
n |I,S) without reduces to computation of Pr (Gm

n |Im,Sm). The modified E-step
and M-step are:

E-step The E-step computes

Q(θm|θm(t)) = EG|Im,Sm;θm(t) [log L (θm; Im,SmG)] (3)

=
∑

n

3∑
i=1

Pr
(
Gm

n = i|Im,Sm; θm(t)
)

[log πm
i + log f (Im

n ;µm
i ,Σm

i )] , (4)

where

Pr
(
Gm

n |Im,Sm; θm(t)
)

= Pr
(
Gm

n |Im
n , Sm

n ; θm(t)
)

(5)

∝ Pr
(
Gm

n , Im
n , Sm

n |θm(t)
)

(6)

= Pr
(
Im
n , Sm

n |Gm
n ; θm(t)

)
Pr

(
Gm

n |θm(t)
)

(7)

= Pr
(
Im
n |Gm

n ; θm(t)
)

Pr (Sm
n |Gm

n ) Pr
(
Gm

n |θm(t)
)

(8)

= f
(
Im
n ;µm(t),Σm(t)

)
× Pr (Sm

n |Gm
n )× πm(t). (9)

This computation is very similar to the E-step used by the Birdseed algorithm, but with the multiplicative
factor Pr (Sm

n |Gm
n ) used to further scale the genotype posterior probabilities.

M-step The parameters µm, Σm, and πm are updated with

θm(t+1) = arg max
θm

Q
(
θm|θm(t)

)
,

which yields

πm(t+1) =
1
N

N∑
n=1

Pr
(
Gm

n |Im,Sm; θm(t)
)
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µ
m(t+1)
i =

∑N
n=1 Pr

(
Gm

n = i|Im,Sm; θm(t)
)
Im
n∑N

n=1 Pr
(
Gm

n = i|Im,Sm; θm(t)
)

Σm(t+1)
i =

∑N
n=1 Pr

(
Gm

n = i|Im,Sm; θm(t)
) (

Im
n − µ

m(t+1)
i

) (
Im
n − µ

m(t+1)
i

)>
∑N

n=1 Pr
(
Gm

n = i|Im,Sm; θm(t)
)

To our knowledge, such an algorithm has not been previously described.

Impact of reference panel

For our main experiments, we varied the sequence and array data used for the test sample but used
4x sequence and 2.5m array data for the other 381 samples. This closely models the use of a public
reference panel (from 1000G data) for imputation, although in practice the genotypes rather than the
raw intensities and reads for the reference panel are input into a genotype calling framework.

Because for many studies a European reference panel may not be suitable, we used our framework to
ask how results changed if an African reference panel was used for imputation.

Experimental data and procedure

We were not able to obtain data for 381 African samples to construct a reference panel of identical
size to the one used in our main analysis. Therefore, we performed experiments with two additional
reference panels, one African and one European, each with 41 unrelated samples from the Hapmap
project [6]. Comparison between these two panels highlights differences that result from panel ethnicity,
while comparison between the two European reference panels highlights differences that result from panel
size.

Data for experiments with these two reference panels were obtained analogously to data for experi-
ments with the 381 sample reference panel. The same intensity data was used or the smaller reference
panels as for the larger reference panel. Sequence data was downloaded from the 1000G Pilot 1 release
and down-sampled with the Genome Analysis Toolkit to approximate .5x, 1x, or 2x sequence coverage.

Two different test samples were used for the two different reference panels: Hapmap sample NA12878
for the European panel and Hapmap sample NA19240 for the African reference panel. Gold standard
genotype and sequence data for these samples was downloaded from the 1000G Pilot 2 release. We
down-sampled this data to approximate .5x (a random 1.875% of reads), 1x (3.75%), 2x (7.5%), or 4x
(15%) sequence coverage for our test sample. This procedure was identical for these two test samples
but slightly differed from the procedure used for the test sample in our main analysis; the European test
sample had similar mean coverage across variant sites under the two different approaches. In addition,
the African test sample had slightly higher coverage (1.3 times greater at variant sites) than the European
test sample, which contributes to some of the differences between experiments that use the two different
reference panels.

Results

We first find that, with a 41 European sample reference panel, SensI remains much higher than SensD but
is significantly lower than SensI with a 381 European sample reference panel (Figure S4). The difference
between the two European reference panels is significant even for the highest sequence coverage and SNP
array density — for 4x sequence coverage and the 2.5m array, SensI decreases with reference panel size
from 96.1% to 92.18%. However, the difference is larger for lower sequence coverage — for .5x sequence
coverage it drops from 83.74% to 61.34% — or for SNP array data alone — for the 2.5m array it drops
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from 91.93% to 78.55%. SpecI is also lower with the smaller reference panel although values remain above
99% for most technologies.

Relative to the 41 European sample reference panel, the 41 African sample reference panel has lower
SensI (Figure S5). Again, the difference is greatest for lower sequence coverages — the African reference
panel yields SensI of 90.99% for 4x sequence data with the 2.5m array but only 41.15% for .5x sequence
data or 61.43% for the 2.5m array alone. The African test sample has higher SensD than the European
test sample as well as higher SensI for private variants, due in part to its slightly higher coverage. These
results are consistent with previous observations that imputation with an African reference panel is less
accurate than imputation with a European reference panel.

We also performed experiments with no reference panel. Here, we down-sampled (to .5x, 1x, or 2x)
the entire set of 382 (or 42) samples and used phasing and imputation within the entire set. As expected,
in this scenario we find an even more significant SensI drop-off relative to the 381 European reference
panel (Figure S6). For sequence coverage below 4x, regardless of the SNP array used, SensI remains
mostly well below 70%. These results show that the attraction of low-depth sequencing as a study design
depends on a reference panel previously characterized with 4x sequence data.

As a final experiment, we explored the impact of different technologies used to build the reference
panel (Figure S7). We find that the use of a 2.5m array and 4x sequence data to build the reference panel,
rather than 4x sequence data alone, has a modest but positive impact on SensI and SpecI. In general, our
experiments show that reference panels built with different technologies change our quantitative results
but keep our qualitative conclusions unchanged.

Return on investment

Our results show that, regardless of technology, additional data collection increases SensI. In general,
additional data collection also increases a study’s cost per sample. Therefore, studies face a trade-off
between higher sensitivity and larger sample sizes.

We first asked at what point additional data collection yields only small gains in SensI. We used
SensD as a measure of the amount of data collected, although it inexactly correlates with cost, because
it is an intrinsic property of each technology. With a 381 European sample reference panel, we find that
SensI quickly plateaus once SensD reaches about 50% (Figure S8). This number depends on the targeted
frequency range: we observe a plateau for > 5% sites even for SensD values as low as 20%, while we do
not observe any plateau for < 5% sites. These observations hold regardless of the specific combination
of technologies used for data collection.

We also asked whether any data collection strategies of similar SensD have different SensI. We find
that, for the most part, combinations with higher SensD have higher SensI. However, designs that
use <500k arrays have lower SensI than designs with comparable SensD that do not use these arrays.
Furthermore, for < 5% variants, designs with comparable SensD values but different density arrays have
different SensI values — for example, 1x sequence data with a 1m SNP array has higher SensD but lower
SensI than 2x sequence data alone.
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