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Mutation induced extinction in finite populations: lethal 
mutagenesis and lethal isolation 

Supplementary text 
 

Dynamics of average census (〈n(t)〉 ) on flat, non-epistatic landscape 
In our analytic approximations, we assume that all (living) members of the population (i) are 
equally fit and (ii) have the same fraction (λ) of lethal mutations.  In that case there are no 
genotypes to speak of, and the population is completely described by its census size (n(t)).  
During a small time dt, the population size increases if a birth occurs and neither offspring carry 
a lethal mutation.  Likewise, if both offspring carry one or more lethal mutations, or if a natural 
death occurs, the population size decreases by one.  These processes are represented by the 
transition probabilities (same as eqs. 1, main text): 

𝑇→(𝑛) = 𝑛 𝑊∗ (𝑒−𝑈𝜆)2 = 𝑛 𝑊∗ 𝑒−2𝑈𝜆 
 

𝑛 < 𝑁 [S1A] 
 

𝑇→(𝑛) = 0 
 

𝑛 = 𝑁  

𝑇←(𝑛) = 𝑛𝑊∗ (1 − 𝑒−𝑈𝜆)2 + 𝑛𝛿,  [S1B] 
 

where Uλ  is the expected number of new lethal mutations per genome and W*, henceforth set to 
one, merely sets the generation time.  Note that T→ and T← depend on n because the total number 
of births during dt is proportional to the current population size.  Eqs. S1A,S1B are plotted in fig. 
S1. 

The expected change in census (dn) at time t, given that the census equals no, is given by 

𝐸[𝑑𝑛|𝑛𝑜] = +1 ⋅ 𝑇→(𝑛𝑜)𝑑𝑡 − 1 ⋅ 𝑇←(𝑛𝑜)𝑑𝑡.                     [S2] 
 

Taking the expectation of both sides with respect to no and plugging in eqs.1 for the transition 
probabilities, we obtain the unconditional expectation of dn, yielding  

〈𝑑𝑛〉 = �2 𝑒−𝑈𝜆 − 1 − 𝛿�〈𝑛〉 ≡ (𝑊𝑛𝑒𝑡 − 𝛿)〈 n〉,                      [S3] 
 

whose solution is obviously 〈n〉 ~ exp[(Wnet-δ)t].  Note, however, that the actual trajectory of n(t) 
often does not resemble the average trajectory 〈n(t)〉, e.g. when extinction occurs.   
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Mean time until extinction (τ) on flat, non-epistatic fitness landscape 
We want to calculate the mean time (τ) until extinction, given that the population has n 
individuals at t=0 and cannot ever exceed a fixed size N.  Following Van Kampen [1] (XII.2, 
XII.3) we begin by writing a recursion relation for the probability density (fn(t)) that the 
population goes extinct at time t, given that it initially has size n: 

𝑓𝑛(𝑡) = 𝑑𝑡 𝑇→(𝑛)𝑓𝑛+1(𝑡 − 𝑑𝑡) 
 

 

+𝑑𝑡 𝑇←(𝑛)𝑓𝑛−1(𝑡 − 𝑑𝑡) 
 

 

+(1 − 𝑑𝑡 𝑇→(𝑛) − 𝑑𝑡 𝑇←(𝑛))𝑓𝑛(𝑡 − 𝑑𝑡) [S4] 
Eq.S4, valid for 2<n<N, merely states that  if the population is to go extinct after t generations, it 
must first either increase its size by one, decrease its size by one, or else remain at size n.  This 
difference equation can be cast as a more tractable partial differential equation by Taylor 
expanding to second order in n and first order in t, which yields 

𝜕𝑓
𝜕𝑡

= �
𝑇→ + 𝑇←

2
�
𝜕2𝑓
𝜕𝑛2

+ ( 𝑇→ − 𝑇←)
𝜕𝑓
𝜕𝑛

. 
                    [S5] 

 
Later we will consider when the continuum approximation is valid and when it breaks down.  
Since we’re interested mainly in the mean extinction time (and not the entire distribution), our 
task is further simplified by multiplying eq.S5 by t and then integrating over t.  Integrating by 
parts on the LHS, we obtain 

−1 = 𝐷𝑛 𝑑2𝜏
𝑑𝑛2

+ 𝑣𝑛 𝜕𝜏
𝜕𝑛

, [S6] 

where 

𝐷(𝑈) ≡
1
𝑛
�
𝑇→ + 𝑇←

2
� 

𝑣(𝑈) ≡
1
𝑛

(𝑇→ − 𝑇←) 

are independent of n and analogous to the diffusion coefficient and convection velocity familiar 
from diffusion theory.  Fig.S1B illustrates how D and v depend on U.   

Eq.S6 is merely a linear ordinary differential equation, which is easily solved by first multiplying 
by the “integrating factor” env/D.  The boundary conditions are τ(n=0)=0 (i.e. a population that 

begins with zero individuals immediately goes extinct) and � 𝑑𝜏
𝑑𝑛
�
𝑛=𝑁

= 0, which symbolizes the 

“reflecting boundary” at n=N [1].  The resulting formal solution is 

𝜏(𝑛) = 1
𝐷 ∫ 𝑑𝑛′𝑒−𝑛′𝑣/𝐷𝑛

0 ∫ 𝑑𝑛′′ 𝑒
𝑛′′𝑣/𝐷

𝑛′′
𝑁
𝑛′ .                     [S7] 

 
Eq.S7 can be simplified by introducing the non-dimensional variables x≡nv/D, xmax≡Nv/D.  
Then,  
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𝜏(𝑥, 𝑥𝑚𝑎𝑥) = 1
𝑣
𝐼(𝑥, 𝑥𝑚𝑎𝑥),                     [S8] 

 
where I(x, xmax ) is the dimensionless integral  

𝐼(𝑥, 𝑥𝑚𝑎𝑥) ≡ � 𝑑𝑥′ 𝑒−𝑥′
𝑥

0
� 𝑑𝑥′′

𝑒𝑥′′

𝑥′′
𝑥𝑚𝑎𝑥

𝑥′
 

 

= � 𝑑𝑥′′
𝑒𝑥′′

𝑥′′
𝑥

0
� 𝑑𝑥′ 𝑒−𝑥′
𝑥′′

0
+ � 𝑑𝑥′′

𝑒𝑥′′

𝑥′′
𝑥𝑚𝑎𝑥

𝑥
� 𝑑𝑥′ 𝑒−𝑥′
𝑥

0
 

 

= � 𝑑𝑥′′
𝑒𝑥′′

𝑥′′
(1 −  𝑒−𝑥′′)

𝑥

0
+ (1 −  𝑒−𝑥)� 𝑑𝑥′′

𝑒𝑥′′

𝑥′′
𝑥𝑚𝑎𝑥

𝑥
 

 

= � 𝑑𝑥′′
𝑒𝑥′′ − 1
𝑥′′

𝑥

0
+ (1 −  𝑒−𝑥)� 𝑑𝑥′′

𝑒𝑥′′

𝑥′′
𝑥𝑚𝑎𝑥

𝑥
, 

[S9] 

The primes in eq.S9 merely represent dummy variables of integration.  Eq.S9 can be further 

simplified by introducing the “exponential integral function” 𝐸𝑖(𝑥) ≡ ∫ 𝑑𝑦 𝑒𝑦

𝑦
𝑥
−∞ .  Then, 

𝐼(𝑥, 𝑥𝑚𝑎𝑥) = 𝐸𝑖(𝑥) − 𝐸𝑖(0) − ln|𝑥| + ln 0 + (1 − 𝑒−𝑥)[𝐸𝑖(𝑥𝑚𝑎𝑥)− 𝐸𝑖(𝑥)].                      
 

Neither 𝐸𝑖(0) nor ln(0) exist, but these two terms cancel near zero since lim𝑥→0𝐸𝑖(𝑥) = ln |𝑥| +
𝛾 [2], where γ≈0.577 is the Euler-Mascheroni constant [2].  Thus,  

𝐼(𝑥, 𝑥𝑚𝑎𝑥) = 𝐸𝑖(𝑥𝑚𝑎𝑥) − 𝑒−𝑥[𝐸𝑖(𝑥𝑚𝑎𝑥) − 𝐸𝑖(𝑥)] − ln|𝑥| − 𝛾 [S10] 
 

Of particular interest is the case x=xmax, which provides the mean extinction time in the case that 
the population is initially full (i.e. n=N at t=0): 

𝜏(𝑁) =
1
𝑣 �
𝐸𝑖 �

𝑁𝑣
𝐷
� − ln �

𝑁𝑣
𝐷 � − 𝛾�. 

[S11] 
 

Eq. S11 is more illuminating in its limiting forms.  In particular, for large values of its argument, 

𝐸𝑖(𝑥) = 𝑒𝑥

𝑥
+ 𝑂(1/𝑥2), while for small x, 𝐸𝑖(𝑥) = ln|𝑥| + 𝛾+ 𝑥+ 𝑂�𝑥2�.  Thus, 

𝜏(𝑁,𝑈)~ 
𝐷
𝑁𝑣2

𝑒
𝑁𝑣
𝐷  

𝑁𝑣
𝐷

≫ 1                              [S12a] 
 

𝜏(𝑁,𝑈)~ −
1
𝑣

 ln �
𝑁𝑣
𝐷 � 

𝑁𝑣
𝐷

≪ −1                            [S12b] 
 

𝜏(𝑁,𝑈)~ 
𝑁
𝐷

 �
𝑁𝑣
𝐷 � ≪ 1                         [S12c] 

 
Eqs. S12a, S12b are the same as eqs. 3a,3b from the main text.  τ scales nearly exponentially 
with N in the survival regime (eq.S12a) and logarithmically with N in the extinction regime 
(eq.S12b).  In the marginal case where v=0 (i.e. m= ln(2)), τ ~ N, which can be contrasted the 
familiar result that time scales as distance squared (i.e. N2) for simple diffusion.  The reason that 
τ ~ N1 here is that T→ and T← are proportional to n in the present case.  Also note that D/v, which 
depends only on Uλ, sets a characteristic scale for the population size.  For “small” populations, 
N≪D/v and τ ~ N, according to eq.S12c.  As v→ 0 (i.e. U→ln(2) ), D/v diverges and all 
populations behave as if they were “small.”    For finite v, |Nv/D| is usually much greater than 
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one for realistic population sizes, and eqs. S12a, S12b are valid approximations.   Fig.S2 
illustrates eq.S11, along with the approximations (eqs.S12).  

Eqs.S12 specify how τ scales with N, but we would also like to know how τ scales with Uλ.  To 
do this, we expand v/D and v, which are both smooth functions (see fig.S1B), in powers of       
Uλ-ln(2).  Then,  

𝜏(𝑁,𝑚)~
1

4𝑁(𝑈𝜆 + 𝛿 − ln (2))2 𝑒
−4𝑁(𝑈𝜆+𝛿−ln(2)) 𝑈𝜆 + 𝛿 < ln (2) [S13a] 

 

𝜏~ 
1

𝑈𝜆 + 𝛿 − ln (2)
ln[4𝑁(𝑈𝜆 + 𝛿 − ln (2)]                     𝑈 𝜆 + 𝛿 > ln (2) [S13b] 

 

Validity of continuum approach 
As shown in fig.S3B, eq.S13A provides an excellent approximation as long as Uλ is not too 
small.  However, there is a much more serious problem in the small Uλ regime:  the entire 
continuum approach breaks down.  In some sense the breakdown is obvious; in reality τ must 
approach infinity as Uλ→ 0, yet the exact solution (eq.S11) to the continuum approach yields a 
(large) finite value in this limit.  The continuum approximation that bridges eqs.S4,S5 is valid 
when the distribution of extinction times (fn(t)) obeys 

𝑓𝑛±1(𝑡) ≈ 𝑓𝑛(𝑡) ± 𝑓′𝑛(𝑡) +
1
2
𝑓′′𝑛(𝑡) [S14] 

 
We can check the self-consistency of the continuum approach by plugging in an approximate 
solution f(n,t) to eq.S5 and noticing when eq.S14 breaks down.  Since all populations eventually 
go extinct, the steady state solution f(n,∞ ) equals one, for all n.  However, for m≈0, the decay 
time to this solution is long, and we expect that 𝑓(𝑛,∞)~𝑒−𝑛𝑣/𝐷.  Indeed, this approximation 
satisfies eq.S5, though it does not quite satisfy the appropriate boundary condition that f’(N,∞)= 
0, since 𝑒−𝑁𝑣/𝐷 is not quite zero.  Plugging this exponential form into eq.S14, we see that eq.S14 
requires that v/D≪1, which is true near the lethal mutagenesis transition, but not deep in the 
survival regime.  Since survival times are astronomically large deep in the survival regime, we 
expect the continuum approximation to accurately describe situations of biological interest 
(where extinction may occur on human timescales).  

Coefficient of variation in extinction time (CVτ)  
Returning the the continuum framework, we can also derive an equation for the mean square 

time until extinction (<t2〉>≡ Q(N)) by multiplying both sides  of eq.S5 by t2, then integrating by 

parts, which yields 

−2𝜏(𝑛) = 𝐷𝑛𝑄′′ + 𝑣𝑛𝑄′. [S15] 
 

Defining x≡nv/D, as before, the formal solution for Q(N) is 
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𝑄(𝑁) =
2
𝑣
� 𝑑𝑥′𝑒−𝑥′
𝑥𝑚𝑎𝑥

0
� 𝑑𝑥′′

𝑒𝑥′′

𝑥′′
𝜏(𝑥′′)

𝑥𝑚𝑎𝑥

𝑥′
 

 

=
2
𝑣
� 𝑑𝑥′′

𝑒𝑥′′

𝑥′′
𝜏(𝑥′′)

𝑥𝑚𝑎𝑥

0
� 𝑑𝑥′𝑒−𝑥′
𝑥′′

0
 

 

=
2
𝑣
� 𝑑𝑥′′

1
𝑥′′�𝑒𝑥′′ − 1�𝜏(𝑥′′),

𝑥𝑚𝑎𝑥

0
 

[S16] 

where τ(x) is given by eq.S10 (not eq.S11) and recalling that τ(x)≡I(x)/v.  It is helpful to partition 
τ into two terms: one that depends only on xmax (τ(xmax), given by eq.S11), and a remainder R(x). 

𝑅(𝑥) ≡ −𝑒−𝑥[𝐸𝑖(𝑥𝑚𝑎𝑥) − 𝐸𝑖(𝑥)] − ln( 𝑥/𝑥𝑚𝑎𝑥) [S17] 
 

Then,  

𝑄(𝑁) = 2𝜏2(𝑥𝑚𝑎𝑥) + 2
𝑣2 ∫ 𝑑𝑥 1

𝑥
(𝑒𝑥 − 1)𝑅(𝑥)𝑥𝑚𝑎𝑥

0 . 

Therefore,  

𝐶𝑉𝜏(𝑁) = �1 +
2

𝑣2𝜏2(𝑥𝑚𝑎𝑥)
� 𝑑𝑥

1
𝑥

(𝑒𝑥 − 1)𝑅(𝑥)
𝑥𝑚𝑎𝑥

0
�
1/2

. 
[S18] 

 

The integrals in eq.S18 are not straightforward, but they can be evaluated numerically.  Fig.S3 
illustrates how CVτ depends on N and Uλ.  Below the lethal mutagenesis threshold (Uλ< ln(2)), 
populations become more stochastic as N increases, since CVτ → 1.  CVτ=1 corresponds to an 
exponential process of waiting for a run of extraordinary bad luck, where all N cells 
independently acquire lethal mutations.  In contrast, above the threshold, populations become 
less stochastic as N increases, since CVτ decreases.   This corresponds to the fact that large 
populations deterministically go extinct at Uλ> ln(2).  At exactly the critical mutation rate 
(Uλ=ln(2)), CVτ can be evaluated analytically, using eqs.S12C,S18: CVτ =√(2)/2 for all N.  
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