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Supplemental Text S2
Material constitutive laws and associated parameters are listed in Supplemental Table SS1. Note that
the white matter brain tissue is modeled using a transversely isotropic constitutive model that enables
anisotropy to be included. The anisotropy is specified by using the DTI tractography to inform the the
finite element of the underlying orientations of the axonal fiber bundles obtained from DTI fiber trac-
tography. The anisotropic properties of brain tissue are important to capture within a computational
framework because the axonal fiber tracts have been reported to be approximately three times stiffer
than the surrounding matrix [1]. Including the axonal bundles also enables axonal strain estimates to
be predicted and the associated axonal strain threshold to be specified, which provides a computational
method to connect the finite element results with the network-based connectome analysis. Note that
viscoelasticy is currently excluded from the constitutive response of brain tissue. This is a limitation of
the current model. The inclusion of viscoelasticty may have an effect of larger shear stresses, but smaller
shear strains, thus, less predicted damage. Future efforts are focused on improving the mechanical de-
scription of brain tissue.

Supplemental Table S1. Compilation of various constitutive models and parameters used for the
head finite element simulation. E is the Young’s Modulus, ν is Poisson’s ratio, ρ is the density and K is
the bulk modulus.

Anatomic Component Material
Model

Material Properties References

Brain Tissue

White Matter Transverse
Isotropic
with Mooney-
Rivlin Matrix

ρ = 1.04 g/cm3

K = 2.3 GPa
C10 = C01 = 1.0 kPa
C3 = 5.0 kPa

[2–5]
[3, 6]
[3]
[1]

Gray Matter Hyperelastic
Mooney-Rivlin

ρ = 1.04 g/cm3

K = 2.3 GPa
C10 = C01 = 1.0 kPa

[3,4, 7]
[3, 6]
[3]

Skull
Isotropic
Elastic

ρ = 2100 kg/m3

E = 15.0 GPa
v = 0.229

[3, 4, 8]

Cerebrospinal Fluid
Hyperelastic
Mooney-Rivlin

ρ = 1000 kg/m3

K = 2.1 GPa
C10 = C01 = 200.0 Pa

[3,4, 9]

Skin/Muscle Layer
Elastic ρ = 1130 kg/m3

E = 100.0 kPa
v = 0.45

[3, 4, 9]
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