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S1 Calculation of Interface Similarity Distribu-
tions

In the following, we give a formal definition of our clustering procedure and
the calculation of (inter-)face similarity distributions across different clustering
Levels and types of sequence divergence. Less detailed description are given
in the Methods. We explain interface similarity measures in the Methods and
Section S2.

Figure S1: Clustering procedure and calculation of similarity dis-
tributions. We clustered interfaces over 3 different levels. In the first level,
’SameSeq’, interfaces coming from identical sequence pairs were grouped to-
gether. Level SameSeq clusters from the same Swiss-Prot pair (’protein pair’)
were then merged in the same Level SameProt cluster. Level SameProt clusters
were grouped together into the same Level Interolog clusters if they came from
the same pair of Pfam [8] families. We used this clustering to derive different
interface similarity distributions, based on three different types of interface com-
parisons: First, we compared only interfaces from the same pair of sequences
(red; distribution DSameSeq), then only those from the same pair of proteins
(blue; distribution DSameProt) and finally we only required them to come from
the same family pair (green; distribution DInterolog)

S1.1 Clustering Procedure

In case of the PDB, only grouping our interactions by sequence pairs would
result in some highly overrepresented protein families that would dominate any
interface similarity distribution. Thus, we need to cluster interfaces further and
then to respect this clustering during the calculation of the distributions. We
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hierarchically cluster hetero-dimers over three levels, corresponding to increasing
levels of sequence divergence.

Let A be a hetero-dimer from our data set. It has two chains from two
different proteins X and Y . We denote the two chains as CAX and CAY . Let
further seqres(CAX) be the SEQRES sequence, sp(seqres(CAX)) the Swiss-Prot
sequence and pfam(sp(seqres(CAX))) the Pfam families of chain CAX . Let those
sequences and families be defined analogously for the other chain CBX .

On the first clustering Level (SameSeq), we assgin two hetero-dimers A
and B (chains CBX′ and CBY ′) to the same cluster if they have the same pair
of SEQRES sequences, i.e. seqres(CAX) = seqres(CBX′) and seqres(CAY ) =
seqres(CBY ′). Consequently, we can represent a Level SameSeq cluster by a
pair of SEQRES sequences (seqresi, seqresj), because all the hetero-dimers in
a cluster have exactly the same SEQRES sequence pair.

On the second clustering level (SameProt), each cluster consists of several
SameSeq clusters. We merge two Level SameSeq clusters (seqresi, seqresj)
and (seqresi′ , seqresj′) if they point to the same pair of Swiss-Prot entries,
i.e. sp(seqresi) = sp(seqresi′) and sp(seqresj) = sp(seqresj′). We denote a
SameProt cluster by its pair of Swiss-Prot entries (spk, spl).

In the third clustering Level (Interolog), finally, two Level SameProt clusters
(spk, spl) and (spk′ , spl′) are grouped together if they have the same Pfam family
composition, i.e. pfam(spk) = pfam(spk′) and pfam(spl) = pfam(spl′).

S1.2 Detailed Definitions of Similarity Distribution

In the following, we describe the calculation of interface similarity distributions.
Mathematically, they fall into the category of so-called ’finite mixture distribu-
tions’, i.e. weighted averages over many uncorrelated individual distributions.
We reduce the influence of the redundancy found in the PDB by giving the
same weight not only to sequence pairs, but also to protein pairs and eventually
family pairs.

S1.2.1 Distribution DSameSeq

Here, we describe how we can use the clustering to derive non-redundant inter-
face similarity distributions. Let Clx ∈ {Cl1, . . . , Cls} be the set of Level Same-
Prot clusters in Level SameFam cluster x, Clx,y ∈ {Clx,1, . . . , Clx,t} the set of
Level SameSeq clusters in Level SameProt cluster (x, y) and EI1

x,y,z, . . . , EI
v
x,y,z

the external interfaces of Level SameSeq cluster (x, y, z). We first calculate
the set of pairwise similarities Sx,y,z = {sim(EIix,y,z, EI

j
x,y,z) | i 6= j ∧ i, j ∈

{1, . . . , v}} where sim(EIix,y,z, EI
j
x,y,z) ∈ [0, 1] was the result of one of the

similarity measures as described in the Methods and Section S2 and EIix,y,z
always came from a different PDB entry than EIjx,y,z. We then defined a dis-

crete probability distribution Px,y,z(X ∈ [ak, ak+1]) =
|{s|s∈[ak,ak+1]∧s∈Sx,y,z}|

|{Sx,y,z}|
with ak = k

n , k ∈ (0, 1, . . . , n − 1) and n typically set to 10, which gave the
chance of the interface similarity lying between ak and ak+1 after randomly
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picking two structures corresponding to the pair of protein sequences given
by Clx,y,z (Note that this is essentially a maximum likelihood estimation for
the unknown parameters p of typically n = 10 different Bernoulli-distributed
random variables). Repeating this procedure for all Level SameSeq clusters
in Clx,y leads to the i.i.d set {Px,y,1, . . . , Px,y,|Clx,y|} and subsequently to the

Level SameProt similarity distribution Px,y(X ∈ [ak, ak+1]) = 1
|Clx,y| [Px,y,1(X ∈

[ak, ak+1]) + · · · + Px,y,|Clx,y|(X ∈ [ak, ak+1])]. We obtain Px in the same

way as Px,y, i.e.: Px(X ∈ [ak, ak+1]) = 1
|Clx| [Px,1(X ∈ [ak, ak+1]) + · · · +

Px,|Clx|(X ∈ [ak, ak+1])]. Finally we define the overall distribution DSameSeq as:

DSameSeq(X ∈ [ak, ak+1]) = 1
s [P1(X ∈ [ak, ak+1]) + · · ·+ Ps(X ∈ [ak, ak+1])].

S1.2.2 Distribution DSameProt

Now, we compare interfaces coming from different Level SameSeq clusters.
Given two Level SameSeq clusters Clx,y,z and Clx,y,z′ with interfaces EI1

x,y,z, . . . , EI
v
x,y,z

and EI1
x,y,z′ , . . . , EI

v′

x,y,z′ , we define the pairwise similarities as Sx,y,(z,z′) =

{sim(EIix,y,z, EI
j
x,y,z′) | i ∈ {1, . . . , v}∧j ∈ {1, . . . , v′}}. The corresponding dis-

tribution is then defined as P ′x,y,(z,z′)(X ∈ [ak, ak+1]) =
|{s|s∈[ak,ak+1]∧s∈Sx,y,(z,z′)}|

|{Sx,y,(z,z′)}|

with ak = k
n , k ∈ (0, 1, . . . , n − 1). Consequently, we can calculate the Level

SameProt distribution P ′x,y(X ∈ [ak, ak+1]) = 1
|Clx,y|(|Clx,y|−1) [Px,y,(1,2)(X ∈

[ak, ak+1])+ · · ·+Px,y,(1,|Clx,y|)(X ∈ [ak, ak+1])+ · · ·+Px,y,(|Clx,y|,|Clx,y|−1)(X ∈
[ak, ak+1])]. Substituting P with P’, we obtain P ′x in the same way as Px in
DSameSeq, and ultimately also the overall distribution DSameProt in the same
way as DSameSeq.

S1.2.3 Distribution DInterolog

Finally, we compare interfaces coming from the same Level Interolog cluster
x, but different Level SameProt clusters (x, y) and (x, y′). To this end, we
define a Level SameProt similarity distribution P ′′x,(y,y′)(X ∈ [ak, ak+1]) =

1
|Clx,y||Clx,y′ | [P

′′
x,(y,1),(y′,1)(X ∈ [ak, ak+1])+· · ·+P ′′x,(y,1),(y′,|Clx,y′ |)(X ∈ [ak, ak+1])+

· · ·+P ′′x,(y,|Clx,y|),(y′,|Clx,y′ |)(X ∈ [ak, ak+1])] where P ′′x,(y,z),(y′,z′)(X ∈ [ak, ak+1]) =
|{s|s∈[ak,ak+1]∧s∈Sx,(y,z),(y′,z′)}|

|{Sx,(y,z),(y′,z′)}|
with ak = k

n , k ∈ (0, 1, . . . , n−1) and Sx,(y,z),(y′,z′) =

{sim(EIix,y,z, EI
j
x,y′,z′) | i ∈ {1, . . . , |Clx,y,z|} ∧ j ∈ {1, . . . , |Clx,y′,z′ |}}. Before,

we used the set of distributions defined as Px,y in order to calculate Px. We
now replace this set with the new newly derived P ′′x,(y,y′) distributions and ob-

tain P ′′x . Performing analogous steps for the overall distribution, we calculate
DInterolog.

S1.3 Standard Errors

We calculated standard errors of distributions DSameSeq to DInterolog with a
multi-level bootstrapping approach. From the n Interolog clusters which con-
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tributed to a D distribution, we first re-sampled with replacement until we had
a new list of n Interolog clusters (in which some entries might have been du-
plicates). In other words, we bootstrapped the Interolog clusters. For each
Interolog cluster in this bootstrap, we then bootstrapped its SameProt clus-
ters. For each of the SameProt clusters in this sub-bootstrap, we bootstrapped
the SameSeq clusters and finally the interface similarities in each bootsrapped
SameSeq cluster. Thus, in the end, our overall boostrap was a resampling over
all Levels and clusters. Next, we re-calculated the D distributions with this
bootstrap and saved it. Then, we repeated all of the above 200 times.

Ultimately, we had 200 different estimates for each of the 10 bins in a D
distribution. The standard error being defined as the standard deviation of
a target statistic and the occurrence of a bin being this target statistic, the
standard deviation of a bin over those 200 estimates defined its standard error.
Note that this procedure is independent of the number of bins: for example,
if we are interested in the occurrence of the range 0.0 to 0.5, we only have to
change the n parameter for the D distribution to 2 (creating two bins: 0.0 to
0.5 and 0.5 to 1.0) and repeat all of the above.

S1.4 Cross-correlating Distributions

In order to capture interface differences with two measures simultaneously, we
compiled so-called ’2D distributions’. In this context, the function sim(EIi, EIj)
of DSameSeq no longer returned a single number, but a triple, with both elements
coming from different similarity measures. Subsequently, we redefined:

Px,y,z(X ∈ ([ak, ak+1], [al, al+1])) =
|{(s1,s2)|s1∈[ak,ak+1]∧s2∈[al,al+1]∧(s1,s2)∈Sx,y,z}|

|{Sx,y,z}|
with

ak = k
n , al = l

n , k, l ∈ (0, 1, ..., n− 1) and n typically set to 10.

S2 Similarity Measures

In the following, we compare the interface between chains CAX and CAY in hetero-
dimeric structure A with the interface between chains CBX and CBY in hetero-
dimeric structure B. X and Y indicate two different proteins (SameSeq, Same-
Prot) or families (Interolog). The atomic sequences of CAX and CBX are related,
but not necessarily the same. In particular, parts of CAX might be missing in
CBX and vice versa because of, e.g., experimental inaccuracies or evolutionary
insertions and deletions (analogous statements for CAY and CBY ). Those cases
should not lead to low interface similarities as they should only be reported for
actual binding mode changes. Consequently, we reduced A and B to common
residues before comparing their interfaces. We found common residues in the
following ways. (In case you want to skip the details of this procedure, simply
assume that corresponding chains had the same number of residues with a 1:1
mapping between them and continue with Section S2.1)
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Let atomseqAX be the atomic sequence, seqresAX the SEQRES sequence and
spAX the Swiss-Prot sequence of chain CAX . Let the same sequences be defined
analogously for the other chains CBX , CAY and CBY .

If corresponding chains had the same SEQRES sequence (i.e. seqresAX =
seqresBX), both of their atomic sequences atomseqAX and atomseqBX were semi-
globally aligned to seqresAX (BLOSUM62 as alignment matrix). Common residues
could then be identified by identical positions in this 3-sequence alignment: all
columns without gaps corresponded to common residues, all other residues were
discarded. Analogous statements hold again for chains Y , but we will restrict
ourselves to the case of X here and in the following for reasons of simplicity.

In case corresponding chains had different SEQRES sequences, but were
variants of the same protein (i.e. mapped to the same Swiss-Prot entry), the
atomic sequences atomseqAX and atomseqBX were first semi-globally aligned to
the SEQRES sequences seqresAX and seqresBX , respectively. Then we aligned
both seqresAX and seqresBX to the representative Swiss-Prot sequence spAX (Note
that spAX = spBX because CAX and CBX come from the same Swiss-Prot entry). In
case we had to introduce gaps in seqresAX during the alignment to spAX , they were
also added at the same positions in the atomseqAX alignment, thus preserving
each alignment and its length (analogous steps for B). In the end, common
residues of atomseqAX and atomseqBX mapped to the same position in the Swiss-
Prot sequence and were identified by gapless columns in the final 5-sequence
alignment.

If the protein chains CAX and CBX came from different Swiss-Prot entries
but the same family, the atomic residues were aligned to Swiss-Prot positions
as before, i.e. atomseqAX was aligned to seqresAX and seqresAX was aligned to
spAX , with analogous steps for B. Finally, we aligned spAX and spBX . In case
of gaps in the alignment between spAX and spBX , they were added at according
positions in both the atomic and SEQRES sequence alignments. In the final
6-sequence alignment, atomic residues mapping to the same position in this last
alignment were considered common residues and could again be identified by
columns without a gap in each of the 6 rows.

Note that structure alignments were not used for two reasons. Firstly, we
wanted to safely identify missing residues. Using SEQRES and Swiss-Prot se-
quences somewhat improves the sensitivity in this context. Consider for example
the case of CAX and CBX coming from different parts of the same gene (as it might
happen for example after post-translational cleavage). A structure alignment
might align CAX and CBX , find common residues and hence allow the comparison
of their interfaces. The above procedure, on the other hand, correctly suggests
that the two proteins have no common background and thus have to be ex-
cluded from the comparison. Secondly, we would have had to align structures
before any pairwise interface comparison because the atomic sequences often
differ slightly. This was unfeasible. Following the above procedure, we only had
to align the atomic sequence to the SEQRES sequence once and could then infer
common residues via this alignment.
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S2.1 Face Position Similarity

Face Position Similarity first creates four different residue sets FAX , F
A
Y , F

B
X , F

B
Y ⊂

N by determining the position of each interacting amino acid on X and Y for
both A and B and then peforms comparisons between FAX and FBX and between
FAY and FBY via sfps:

sfps : 2X × 2X → [0, 1]

(F1, F2) 7→ |F1 ∩ F2|√
|F1||F2|

(1)

where X = N and F1 and F2 are two sets of face residue positions so that each of
their elements points to exactly one amino acid on a common protein sequence.
For simple single distributions (Section S1.2 and Methods), the two similarities
were subsequently arithmetically averaged. In the 2D plot (Section S1.4 and
Methods), they were treated separately so that only corresponding faces were
compared.

S2.2 Interface Position Similarity

Interface Position Similarity captures similarity analogously to Face Position
Similarity, but also includes information about which particular pairs of amino
acids interact. A and B are projected onto two sets IFA, IFB ⊂ N × N which
both contain tuples of positions of interacting residues. An element (i, j) ∈ IFA
for example indicates that in structure A, the i-th residue of X has contact with
the j-th residue of Y. The similarity between IFA and IFB is calculated via sfps
with X = N× N (see Eq. 1).

S2.3 Sphere Radius Ratio

Sphere Radius Ratio first uses the residue position sets FAX , F
B
X ⊂ N as defined

in Section S2.1 to specify two different face locations on chain CAX and stores the

coordinates of the corresponding atoms in sets K
CA

X

A ,K
CA

X

B ⊂ R3 (note that only
one of the two sets contains atoms which are actually interacting in structure
A). Their similarity is then calculated via ssrr

ssrr : 2R
3

× 2R
3

→ [0, 1]

(K1,K2) 7→ rmbs(K1)

rmbs(K1 ∪K2)
(2)

where rmbs : 2R
3 → R returns the radius of the smallest sphere which encom-

passes all of the given coordinates.
Applying this procedure not only to CAX , but also to CAY ,CBX and CBY , one

obtains all in all four distinct similarities sAX , sAY , sBX and sBY . As differences
between similarities corresponding to the same chain but different structures
(e.g. sAX and sBX ) should mainly be attributed to backbone flexibilities, we
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always averaged those arithmetically, reducing the number of similarities for
one pair of external interfaces to two. Analogously to Face Position Similarity,
these were then again averaged when deriving 1D distributions (Section S1.2).

S2.4 Convex Hull Overlap

Using K
CA

X

A and K
CA

X

B ⊂ R3 as defined above, Convex Hull Overlap first calcu-

lates their convex hulls H
CA

X

A and H
CA

X

B and then defines scho as:

scho : P3 × P3 → [0, 1]

(H1, H2) 7→ vol(H1 ∩H2)

max(vol(H1), vol(H2))
(3)

where P3 is the space of polyhedra in R3, ∩ : P3 × P3 → P3 a function which
determines the intersection of two polyhedra and vol : P3 → R a function which
returns the volume of a polyhedron.

Analogously to Sphere Radius Ratio, creating the convex hulls and calculat-
ing scho not only for CAX , but also for CAY ,CBX and CBY , one obtains four distinct
similariy values for each pair of external interfaces. These were then averaged as
in the previous Section. Convex Hulls were calculated with the QHull package
[1].

S2.5 Interface Composition Similarity

For both sets, FA = FAX ∪ FAY and FB = FBX ∪ FBY (Section S2.1), Interface
Composition Similarity replaces each residue position i ∈ FA, FB with the cor-
responding amino acid aai ∈ Σ, where Σ is the set of 20 amino acids. An
interface can then be represented as a function cX : Σ → N giving the num-
ber of occurrences of each amino acid in an interface X. To compare interface
compositions we define saac similarly to sfps:

saac : C × C → [0, 1]

(c1, c2) 7→
∑
σ∈Σ|c1(σ)− c2(σ)|√∑
σ∈Σ c1(σ) ∗

∑
σ∈Σ c(σ)

(4)

where C is the space of interface functions cX .

S2.6 Domain Number Ratio

We mapped each SCOP and CATH domain onto our sequences and counted the
number of domains involved in the interaction for each external interface. A do-
main was involved if it contributed at least one binding residue to the interface.
For each fully annotated pair of interfaces, we defined Domain Number Ratio
as the ratio between the smaller and the larger of the two domain numbers.
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S2.7 Family Interaction Similarity

The interface of an external interaction not only corresponds to pairs of inter-
acting residues as defined by Interface Position Similarity, but also to pairs of
interacting protein families. Thus, we employed SCOP and the domain map-
ping of Domain Number Difference to study to what degree pairs of interacting
families change when comparing two external interfaces. For each structure, we
compiled the set of all family pairings, analogously to IFA and IFB of Interface
Position Similarity (S2.2). The actual similarity could then be derived by sfps
with X = F× F, where F was the space of SCOP families .

S2.8 RMSD

Actually not a similarity measure for interfaces, but rather for pairs of protein
chains, we calculated the Root Mean Square Deviation (RMSD) of two binary
heterocomplexes. To this end, we first separately superimposed CAX and CBX and
then CAY and CBY . The average RMSD of both superpositions then represented
the final similarity value which could be processed like any other similarity
described before.

S2.9 L rms

In order to link our results to related work, we introduce the measure L rms
from the CAPRI experiments [6]. Here, we first superimpose the bigger of the
two chain pairs (i.e. either CAX and CBX or CAY and CBY ). Then, we apply
the transformation of the superposition to the remaining chains and calculate
their RMSD. This measures how far the two smaller chains are apart in space.
Note that L rms is an interface distance measure which does not return a value
between 0.0 and 1.0, but a distance in Å.

S2.10 I rms

The I rms is again a measure of the CAPRI experiments [6]. First, we redefine
the interface between CAX and CAY : Now, every pair of residues with at least one
atom pair closer than 10Å is part of the interface (before, it was 6Å). Then, we
determine equivalent interface residues of A and B: we first create two sets of
residue positions: RXcommonIF = FAX ∩FBX and RYcommonIF = FAY ∩FBY (see S2.1
for definitions of the F sets). Then we reduce CAX and CBX to the residues in
RXcommonIF , with analogous steps for Y . In these new interface structures, we
remove all non-backbone atoms.

This leaves us with two new structures which have the same amount of
atoms. All these atoms are both part of the interface and the protein backbone.
Next, we optimally superimpose the structures and calculate the RMSD. This
RMSD is the I rms. In case we could not find common interface residues before,
we returned maximum RMSD.
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Figure S2: A hierarchy of interface similarity measures. We have looked
at the 0.9 to 1.0 bins of the DSameSeq distributions and used them to compile a
hierarchy of measures based on sensitivity. We differentiate between measures
that look at both sides of the interface at the same time or incorporate interfa-
cial contacts (Interface Similarity) and those which first treat each side of the
interaction separately and then average their conservations (Face Similarity).

S2.11 Comparison of Measures

We have introduced a number of measures which capture different aspects of
interface similarity. If they find dissimilarity, they assign lower values with
different amplitudes, what makes them essentially incomparable in absolute
terms. We can, however, compile a hierarchy of which measure sees differences
more often than others based on the empirical results presented throughout the
manuscript. We show it in Fig. S2. Here, we see that Convex Hull Overlap is
the overall most sensitive face similarity measure. Only closely behind in terms
of sensitivity follows L rms, which is, however, strongly influenced by backbone
movements of the entire proteins. The Face and Interface Position Similarity
measures, coming next in the list, are both exclusively residue based. Interface
Position Similarlity takes into account conservartion of residue-residue contacts
and is therefore more susceptible to change. The I rms, on one hand, is in
principle quite sensitive because we chose very fine grained RMSD thresholds
(steps of 0.5Å). One the other hand, it misses dissimilarities due to the reduction
to common interface residues and also similarities if no such residues could be
found. The Interface Composition Similarity (residue based) and Sphere Radius
Ratio (atom based) already fall into the class of rather robust measures. As a
specialty, both almost never assign low similarities. In case of the Interface
Composition Similarity, this is mainly due to random effects. Two interfaces
usually have similar dimensions which is why Sphere Radius Ratio always sees
some similarity. Finally, we have the domain based similarity measures. CATH
domain assignments change slightly more often between interfaces than SCOP
assignments. Obviously, entire SCOP domain families are even more conserved
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than domains.

S3 Data Set Analysis

S3.1 Influence of Data Set Parameters

In related publications, there are usually a number of ad-hoc decision when se-
lecting structures and defining interfaces. To exclude experimental or sampling
bias in this context, we investigated the influence of some of the arguably most
crucial alternatives: including structures with a resolution above 2.5Å; setting
the minimal distance of two residues to be considered interacting to 4Å instead
of 6Å; using ∆ASA (change of accessible surface area) as a means to correct for
interacting residues slightly above a given distance cutoff; using level SameSeq
clusters with less than 5 members instead of 5 or more members.

While the first two points can be commonly encountered, the use of ∆ASA
when defining interfaces (as opposed to faces) was mainly an effort to retain
consistency with the PISA service, which exclusively uses ∆ASA to define face
residues. The use of clusters with less than 5 members finally was a test in how
far cluster size influences the expected similarity of two interfaces.

We interpreted the options above as parameters which can adopt two distinct
values, on and off, and used one of our most sensitive similarity measures, In-
terface Position Similarity (Section S2.2), to assess their effect. For a particular
parameter value combination, we first calculated the discrete probability dis-
tribution DSameSeq (Section S1.2 and Methods). Put simply, this corresponds
to the average distribution of pairwise interface similarities for identical protein
pairs in a redundancy reduced version of the PDB. This procedure was repeated
for all possible value combinations, resulting in 24 = 16 different distributions.
One could then create 8 pairs of distributions for each parameter pi by only
changing the value of pi and keeping the other parameters fixed. For example,
there were 8 combination with low-resolution structures included and 8 where
they were excluded, thus creating 8 pairs of corresponding distributions. The
mean and maximal change in distribution for each parameter value and bin then
allowed to combine everything in one image (Fig. S3). To stay with the example
of including low-resolution structures, a mean change of 5.0 for this option in a
particular value range meant that the probability of observing such an interface
similarity in this range on average changed by 5.0 percent when this option was
turned on. Note that this was an exclusively graphical approach to estimate
effects, as already changing the number of bins could lead to different values.
Since the presentation of results will be kept in this form throughout the rest
of this paper, however, it was sufficient in our case.

According to Fig. S3, each parameter can have a considerable effect. Includ-
ing ∆ASA, using 6Å instead of 4Å and high instead of low resolution structures
generally stabilized interfaces, i.e. similarities shifted from intermediately high
ranges (0.7 to 0.9) to very high conservation (0.9 to 1.0). A different phe-
nomenon arises when using small instead of large clusters: interfaces of small
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Figure S3: The effect of different parameters on the similarity distri-
bution of interfaces. Both curves were derived with the Interface Position
Similarity measure (Section S2.2). (A) An example of a distribution change
when altering a single parameter value. It corresponds to switching the inclu-
sion of ∆ASA on and off (Methods) when considering large complexes with
resolutions above 2.5Å and an interaction distance cutoff of 4.0Å. (B) The av-
erage (thick bars) and maximum (error bars) differences for each parameter and
bin with respect to all parameter combinations.

clusters with only 5 or less members tend to be less complementary and more
conserved, thus supporting the hypothesis that big complexes encourage alter-
native binding modes for the same pair of proteins. As they produce more
binary structures of the same external interaction, they tend to be found in
larger clusters. This is studied in more detail in Section S5.

S3.2 PPI Data Set Properties

Cluster and Complex Sizes

In order to give a better picture of the data at hand (Methods), we compiled
histograms of the number of protein chains per complex, external interfaces per
Level SameSeq cluster, Level SameSeq clusters per Level SameProt cluster and
Level SameProt clusters per Level Interolog cluster (Fig. S4; see Methods and
Fig. S1 for a description of the clustering procedure). All plots were calculated
with the final data set after filtering (exclusion of bad resolution complexes,
small interfaces, ...; see Section S3.1)
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Figure S4: Histograms of various properties of our final data set. We
show the distribution of the number of binary interactions per Level SameSeq
cluster (heterodimers per SEQRES pair), the number of Level SameSeq clusters
per Level SameProt cluster (SEQRES pairs per Swiss-Prot pair) and the number
of Level SameProt clusters per Level Interolog cluster (Swiss-Prot pair per Pfam
[8] family pair). The inlet additionally displays the histogram of the complex
oligomeric states, i.e. the number of protein chains per complex.

The curves in Fig. S4 display typical exponentially decreasing distributions.
The distribution of oligomeric states and heterodimers per Level SameSeq clus-
ter are influenced by a natural preference for symmetrical assemblies so that
counts for even numbers are overrepresented. Additionally, some larger Level
SameSeq cluster sizes are quite frequent (not shown). An overrepresentation
of size 17 clusters, e.g., stems from a significant abundance of Cytochrome C
Oxidase in the PDB. The effect is already remedied in the second clustering
level, however, where exteral interactions are grouped according to the proteins
involved.

Interface Sizes

Next, we analyzed the size of interfaces. To this end, we first counted the number
of residue-residue interactions in each interface. Then, we calculated the dis-
tribution of interface sizes individually for each Level SameSeq cluster. These
distributions were subsequently normalized in the same way as a DSameSeq dis-
tribution (Methods and Section S1), i.e. we first normalized for overrepresented
sequences, then for proteins and then for families. The final distribution is
presented in Fig. S5A.

We observe quite a far stretched distribution of interface sizes, as some pop-
ulation exists even beyond 400 residue-residue contacts. Compiling the data
with bin size 100, it corresponds to an exponentially decreasing curve, i.e. the
smaller the interface, the more frequent. Looking closer at interfaces with 0 to
100 contacts, however, (Fig. S5A, inlet), we see a peak in the range from 40 to
60 residues. The bin from 0 to 20 contacts only plays a minor role.

14



Structural Similarities

Then, we looked at the Root Mean Square Deviations (RMSDs). As the RMSD
typically involves two structures, we implemented it as a standard similarity
measure: first, we split the two hetero-dimers under consideration into their
four chains. Then, we superimposed corresponding chains, calculated the two
RMSDs and returned the average of both (Section S2.8). This allowed us to em-
bed the RMSD into our evaluation framework and observe how values change
across different types of comparions (DSameSeq through DInterolog; Methods
and Section S1). It featured comparisons within clusters (e.g., we calculate one
distribution for each Level SameSeq cluster) and across clusters (final distribu-
tions DSameSeq to DInterolog are averages over within-cluster distributions). See
Fig. S5B for results.

The RMSD distributions impressively show the effects of sequence varia-
tions. Comparisons between proteins with the same sequence (DSameSeq) most
often result in very low RMSD values (0.0Å to 0.5Å). Occurrence of higher
values then decreases exponentially and disappears beyond 1.5Å. The distribu-
tion of RMSDs between chains from the same protein but different sequences
(DSameProt) exhibits a clear decrease of high similarity (0.0Å to 0.5Å) and an
increase of other ranges up to 2.0Å. When comparing chains from different pro-
teins but the same family, finally, occurrence peaks in the range from 0.5Å to
1.0Å and then steadily declines. As also this distribution stops early for values
above 3.0Å, we can say that any DInterolog distribution compares proteins with
the same structure, but different sequences.

Function Conservation

We tried to analyze the relationship between protein interactions and protein
functions. Unfortunately, large scale function annotations as found, e.g., in
Swiss-Prot, in the form of, e.g. Gene Ontology (GO; [2]) terms or Enzyme
Commission (EC) numbers, only reach the protein and not the sequence level.
Therefore we limited our analysis to the functional diversity found in Level In-
terolog of our clustering (Methods and Section S1), where proteins are grouped
by Pfam [8] families. (Note that Pfam itself aspires to only group functionally
related proteins. Hence, we are to some degree comparing different function clas-
sification systems.). In this context, we first have to report a negative result:
after mapping level Interolog cluster with more than 1 member to experimen-
tal GO annotations (evidence codes IDA, IMP, IPI, IGI, IEP, TAS, IC, and
EXP), only 26 clusters had more than one functionally annotated protein pair.
This was clearly not enough to generally link functional and interfacial diver-
sity. Even a case-by-case reasoning failed: 15 of 26 clusters contained proteins
which differed in their annotation already on the first level of the Molecular
Function ontology. Curiously, the term leading to by far the most diversity was
”binding”. This means despite clear evidence of protein binding in the PDB,
the experimental evidence had not made it into Swiss-Prot, yet. Manually cu-
rating the annotations in the 26 clusters after this finding, we could not find

15



Figure S5: (A) Distribution of interface sizes. We counted the num-
ber of residue-residue contacts per interface and calculated the distribution of
interface sizes for each Level SameSeq cluster. In this way we could derive dis-
tribution DSameSeq like for any other similarity measure (Methods and Section
S1). Subfigure (a) shows this distribution first on a rather coarse scale (bin
size 100). As it peaks between 40 and 60 contacts, we additionally zoom into
the first bin (inlet). (B) Distributions of RMSDs. We interpreted the clas-
sical Root Mean Square Deviation as a similarity measure and superimposed
corresponding chains when comparing two binary heterocomplexes in a Level
SameSeq cluster. The two resulting RMSD values were always averaged. This
allowed us to calculate DSameSeq through DInterolog (Methods and Section S1).
(C) Function Conservation within Level Interolog clusters. We ana-
lyzed how often and to what degree the EC number between two proteins from
the same Pfam family is conserved. The distribution shows the average over
all families after averaging the pairwise conservations within each family. This
corresponds to the procedure used to calculate the DInterolog distribution in the
context of interface similarity measures (Methods and Section S1.2).

clear evidence of functional diversity.
Consequently, we switched from GO annotations to EC numbers, in the

hope of more and more complete functional annotations. Indeed, the majority of
proteins were annotated with EC numbers, and we could derive a distribution of
function conservation in the following way: First, we defined a pairwise function
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Actual State Sensitivity Incorrect States

1-mer 0/2 2 x 2-mer
2-mer 4/7 2 x 4-mer, 8-mer
4-mer 34/36 2 x 2-mer
6-mer 3/3 -
8-mer 1/1 -
9-mer 29/29 -
12-mer 31/32 6-mer
16-mer 0/2 2 x 8-mer
20-mer 0/1 18-mer
21-mer 4/4 -
24-mer 2/2 -

Overall Accuracy: 90.7±2.7% (108/119)

Table S1: The accuracy of PISA evaluated with 119 heterocomplexes.
“Actual State” refers to the actual oligomeric state of a given complex, “Sen-
sitivity” to the fraction of correctly predicted complexes in the respective state
and “Incorrect States” to the oligomeric states the complex was assigned to in
case it was predicted incorrectly.

similarity measure: given two proteins, it returns the number of conserved EC
number digits. For example, if protein A has EC number 3.4.11.4 and protein B
number 3.4.16.1, the measure returns the number 2, because the first two digits
are conserved. Calculating the distribution of pairwise functional similarities
in this way for each cluster and then averaging over all clusters, we obtained
a DInterolog distribution (Methods and Section S1.2). We present it in Fig.
S5C. Here, we see that 60% of protein pairs in a cluster have exactly the same
EC number. Conservation then sharply drops for 3 and 2 conserved digits, but
rises again for 1. This should mainly be due to random effects, however, since
complete enzymatic heterogenity (no conserved digits) has the lowest occurrence
(3%).

S3.3 On the Accuracy of PISA

Crystallographic methods often do not allow the accurate determination of the
biologically relevevant protein assembly, especially in the case of larger com-
plexes. Experimental ways to look at assemblies in the living cells (e.g. cryo
electron microscopy) are limited. For our studies, we exclusively used author
assigned biological assemblies as annotated in the PDB. In most cases, this
means that some interfaces from the aymmetric unit (ASU) have been deemed
crystallographic artifacts and that the original complex has been broken down
into smaller fragments. Crystallographic interfaces are often determined on the
basis of, e.g., interface size (the smaller, the less likely to be relevant) or homol-
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ogy (e.g. a protein is similar to another tetramers, thus it is also a tetramer).
The PDB provides biologically relevant complexes in the form of downloadable
structures, besides the ASUs. They cover about 99% of all high-resolution PDB
entries with external interfaces (data not shown) and appear to be quite reli-
able: in about 100 manual checks whether the author-assigned biological unit as
deposited in the PDB was also described as such in the publication introducing
the structure, we found only 1 clear mistake.

Despite this high accuracy and coverage, PISA [5], the successor of PQS [3],
provides yet another view onto the PDB interactome: it cannot only differentiate
between specific and non-specific interfaces, but also re-assemble the fragments
of the ASU in order to build the most probable quarternary structure in the
living cell. Hence, it might find assemblies which crystallographic methods miss
due limitations of experimental methods. We took the opportunity of this work
to study its accuracy in context of external interfaces, i.e. interfaces coming
from different proteins. While in the majority of cases, there is no experimental
data to verify its predictions (which is also why we did not use PISA in the
main text), a number of highly accurate biological complexes were available in
the PIQSI [7] database.

PIQSI is a manually curated database annotating the oligomeric state of
around 15,000 PDB entries (May 2011). Each complex is given an error attribute
indicating whether it has the correct oligomeric state. We only considered PIQSI
complexes “without errors”, thus reducing the number of annotated complexes
to 10,000. Unfortunately, only a small fraction of those were heterocomplexes,
so that after intersecting PIQSI with our data, only 119 complexes remained
for evaluation. Corresponding coordinate files were dowloaded from the PIQSI
website. We then compared the oligomeric state of each of those complexes to
the most probable complex predicted by PISA. Results are given in Table S1 in
a similar way as found in [4].

The evaluation reveals quite a high precision of PISA with an accuracy of
90.7%. This is in line with previous accuracy reports [4]. Note that an erroneous
prediction does not automatically lead to distorted similarity distributions for
all external interactions of this complex as only a fraction of interfaces should
undergo changes in the transition from the incorrect to the correct quaternary
structure. Also notice that errors are not systematic over or underestimates
of complex sizes so that missing or superfluous interfaces introduced by the
wrong oligomeric states should roughly equal each other out with respect to
complementarity. To validate these claims, we applied our clustering procedure
(Methods and Section S1) to the PIQSI data set and compared the Face Position
Similarity distributions to those derived from the PISA data set (distribution
DSameSeq; Fig. S6A). We did not require two or more PDB entries per external
interactions, however, in order to increase the number of interactions for PIQSI.
Thus, in absolute terms, curves should be biased towards low similarity.

Due to the small sample size, only a distorted curve could be derived in Fig.
S6, but it becomes clear that interfaces are largely the same in both complex
sets. Given these estimates, it is unlikely that the more accurate determination
of the quaternary state of a protein will have a significant impact on the results.
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Figure S6: (A) Comparison of Face Position Similarity distributions
derived from complexes common to our data and PIQSI. This panel
shows the Face Position Similarity Distribution DSameSeq when only comparing
complexes common to both PISA and PIQSI. The range 0.9-1.0 is omitted
in order to emphasize the other ranges. It is shown again in the inlet. (B)
Comparison of Face Position Similarity distribution DSameSeq on the
PISA data set. Here, we replaced all author assigned complexes in our data
set with those predicted by PISA and re-calculated the Face Position Similarity
distribution.

In fact, after replacing all author assigned PDB assemblies in our data set
with the most probable PISA assemblies and re-filtering and re-clustering all
interactions, the according face similarity distribution was mostly within the
standard errors (S6B).

S4 Significant Complex Subgroups

There is a possibility that the observed interface variability is confined to partic-
ular complex families or subgroups which are known to be overrepresented in the
PDB. To address this, we first looked at the occurrence of the 0.9 to 1.0 similarity
range in the distribution of each Level Interolog cluster (no sequence divergence
[DSameSeq]; data not shown). We found a continuum of values, ranging from
0% to 100%. This means there is no particular group of families responsible for
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Figure S7: Distributions of interface similarity in particular complex
subgroups. In (A), we show the DSameSeq distribution without the range 0.9-
1.0. It was omitted due to its overall dominance. Instead, we present it in the
corresponding cumulative distribution (B).

the overall observed interface variability. Instead, there are examples for each
degree of variability. Furthermore, we found that the size of a family (number
of Level SameSeq and Level SameProt clusters in a Level Interolog cluster) does
not correlate with its 0.9 to 1.0 bin. Secondly, we queried the PDB for known
Virus, Antigen/Antibody and Major Histocompatibility (MHC) complexes and
determined the intersection of these subgroups with our data set. This revealed
39 viral, 235 Antigen/Antibody and 198 MHC structures in our data, account-
ing for 3.0%, 18.2% and 15.4% of all complexes, respectively, and, due to overlap
between the sets, together to 21.8%. Distributions for the Face Position Similar-
ity measure (DSameSeq; Section S1 and Methods) and each subgroup are given
in Fig. S7.

Even though the distributions of the three subgroups substantially differ
from the overall distributions, it becomes clear that they are not exclusively
responsible for interface variabilities observed in the entire data set. MHC
complexes actually appear to be the cause for quite a high fraction of conserved
interfaces. In contrast, the Antibody/Antigen subgroup populates the area
from 0.0 to 0.9 with 8% of all similarities. In the same range, viral interface
similarities are more frequent at a cumulative rate of 21%. Due to small sample
sizes, error estimates in all distributions are generally large.
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Figure S8: The change of the similarity distribution when restricting
comparisons to interfaces with a particular copy number. A given
interface corresponds to a certain interaction of two proteins and originates from
a particular complex (Fig. 1). We counted how often the interaction occurred
in the complex and assigned this number, the interface copy number, to the
interface. We repeated this for all interfaces. In the Figure above, we show
DSameSeq distributions derived exclusively wth interfaces sharing a particular
copy number. This number is depicted by shades of gray: the darker, the higher.

S5 Complex Size vs. Interface Variation

The oligomeric state of a complex should be linked to interface variability, as the
necessity for alternative binding increases with the size of the complex. Since
higher order complexes can be built from many different proteins, however, it is
not so much the plain oligomeric state that should be linked to variability, but
rather the number of copies of the same external interaction in one particular
assembly. We verified this hypothesis in the following way: first, for a given
interface, we determined its corresponding interaction and complex. In Fig. 1,
for example, interface X-Y corresponds to interaction S1-S3 and complex C1.
Then, we counted how often this interaction occurred in the complex (Fig. 1: S1-
S3 occurs twice in complex C1) and assigned this number to the interface (Fig.
1: interface X-Y has copy number 2). This was repeated for all interfaces in our
data set. By restricting measurements to interfaces with the same associated
copy number, we could then derive one overall similarity distribution DSameSeq

for each observed copy number. These distributions were calculated as before
with the procedure described in the Methods and Section S1.2. In case of copy
number 3, e.g., this meant that we calculated the distribution of a single Level
SameSeq cluster (Methods) only with interfaces which come from a complex in
which this interaction occurred 3 times. Comparisons between interfaces with
different copy numbers were discarded. Due to lack of samples for specific copy
numbers above 4, we had to limit this analysis to copy numbers 1 to 4 plus an
average over interfaces with a copy number higher than 4. Results are given in
Fig. S8.

As can immediately be seen from the high similarity range (0.9 to 1.0),
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interface similarity is clearly linked to the copy number of the interaction in the
respective complex. Interfaces in dimers are highly conserved, with differences
almost exclusively staying in the range from 0.8 to 1.0. High similarity then
gradually declines so that the curve for complexes with more than 4 copies of
the same interaction shows similarity to an equal distribution.

S6 Distributions of Interface Similarities

S6.1 Face Similarity Distributions

In the following, we present the results for face similarity measures (Fig. S10;
measures introduced in Sections S2.4, S2.3 and S2.5). The calculation of the
distributions is described in the Methods and Section S1.2. Together with a
more detailed discussion, we complement the corresponding paragraph in the
Results Section.

Overall, the curves for Convex Hull Overlap are similar to those of L rms.
Note, however, that this measure exclusively compares the interface area and not
the entire proteins. Its high sensitivity comes from a comparison of interface
shapes and their overlap in volume. Side-chain movement on the edge of an
interface, for example, can lead to different interface shapes and thus to lower
Convex Hull Overlap.

Sphere Radius Ratio, on the other hand, is the most robust of all measures.
This is mainly because it is very difficult to achieve low similarities the way
it is calculated (radius of one interface devided by radius of both interfaces
combined) and considering the typical proportions of a protein. It is interesting
to see that the rough positions of the interfaces on the proteins appear to be
conserved even for DInterolog.

Interface Composition Similarity compares the amino acid compositions.
Also here, dissimilarity is present in all distributions and proofs that differ-
ences in terms of residue positions are not due to interface duplications, as
expected for example for a protein with two sequentially identical domains. As
the measure is also prone to return higher similarities simply by chance (any
two interfaces larger than 10 amino acids will have at least one in common),
we additionally show the random distribution which was derived by randomly
picking interfaces and comparing their compositions. While DSameSeq shows
typical values in the area of high interface conservation, lower ranges are not
populated. This is in line with the random distributions. In DSameProt and
DInterolog, the divergence of sequences sets in, because we now allow differ-
ent amino acids at the same position in the interfaces. The range 0.9-1.0 in
DInterolog has the lowest absolute value. Curiously, the influence of sequence
divergence and the random distribution merge seamlessly: DInterolog resembles
an equal distribution until about a value of 0.5.

The I rms distribution is quite complex: in the range >4.5Å-4.0Å, we see a
difference between distributions similar to L rms , but with lower overall occur-
rence. However, the fraction of comparisons with highest I rms, i.e. where no
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Figure S9: The face similarity distributions for Convex Hull Over-
lap, Sphere Radius Ratio and Interface Composition Similarity. The
random variant of Interface Composition Similarity was derived by repeatedly
randomly picking two interfaces from two different clusters in the respective
level and applying the measure. For each similarity range and measure, there
are three bars. Their order corresponds to the three Distributions DSameSeq to
DInterolog (Methods). The inlet in each plot displays the corresponding cumu-
lative distributions.

common interface residues could be found, accounts for only 1-2% in all three
distributions (not shown). Consequently, their differences must come from com-
parisons for which common interface residues could be found, but where these
residues had very different atom coordinates. This could be due to, e.g., inter-
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face rotations, different overlapping binding modes, but also to overall confor-
mational changes (for the I rms, we included residues in the interface which were
as far as 10Å apart). We can hypothesize from this result that ’binding clouds’,
as shown in the sample structures, should be more frequent in D-Interolog than
the other two distributions. Moving on to intermediately low similarities, they
seem to be surprisingly rare. One issue is that common interface residues can
often be found for only one side of the interaction, i.e. for only one face. In this
case, I rms turns into a comparison of identical fragments of the same protein
(family), instead of a comparison of interfaces. Such comparisons usually result
in low similarity/high distance ranges (1.0Å- 0.0Å). Similarly, even if all chains
have common residues, the exclusion of non-common interfaces residue can lead
to low I rms despite actually different interfaces. Compared to other measures,
I rms should therefore be considered as rather insensitive. Nevertheless, in ab-
solute terms, occurrences of identical interfaces fell well in between the ranges
of the other measures.

S6.2 Interface and Domain Similarity Distributions

Now, we show the curves for interface and domain similarity measures (Sections
S2.2, S2.6 and S2.7) that were excluded in the main text. As results are overall
very similar to those already shown in the context of other measures, we focus
on simplicity and only present DSameSeq distributions.

In general, Interface Position Similarity (Fig. S10) draws a similar picture
as the face counterpart. As could be expected, though, the chance that a pair
of interacting residues is conserved becomes very small when one or both of the
interacting faces change according to the Face Position Similarity distributions,
thus leading to an increase of high complementarity for Interface Position Simi-
larity compared to Face Position Similarity. Only around 10% of all similarities
now lie in the intermediate range between 0.1 and 0.9. Changes in domain num-
bers or families as measured by Domain Number Ratio and Family Interaction
Similarity occur in about 5-15% of all DSameSeq comparisons. We can interpret
this observation to imply that interfaces are slightly more similar in terms of
this measure than in terms of the others. However, we could also argue that
this low difference is partially explained by ambiguities in terms of the domain
definitions (and directly connected to this: in terms of the number of domain
families), as for instance SCOP and CATH domain assignments differ by about
this magnitude [48,49]. In any case, it indicates a steady rate of multi-domain
proteins which have learned to interact with their domains in more than one
way. Only considering domain-domain interactions, there is a chance we miss
parts of the interface between two entire proteins and do not see, for example,
that not all domains are always needed for the interaction.

S6.3 Cross-correlations

The full extent to which interfaces vary is best appreciated when cross-correlating
multiple measures. The same interface pair might appear identical by one mea-
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Figure S10: The interface similarity distributions for Interface Posi-
tion Similarity, Domain Number Ratio (SCOP and CATH) and Fam-
ily Interaction Similarity. We limited the analysis to distribution DSameSeq

for reasons of simplicity. In the context of the Domain Number Ratio, we
present the results for both SCOP and CATH. The Family Interaction Similar-
ity was only derived for SCOP. In each plot, the inlet shows the corresponding
cumulative distribution.

sure and different by another. To identify such cases, we selected a few pairs
of measures and derived the correlation between their distributions. To this
end, we no longer calculated the occurrence of a single similarity range (e.g.
0.9 to 1.0) for one particular measure. Instead, we looked at two similarity
ranges simultaneously, each corresponding to a different measure. For example,
we measured how often the similarity of a pair of interfaces lies in the range
between 0.9 and 1.0 according measure 1 while being between 0.1 and 0.2 for
measure 2 (Section S1.4 for details). The visualization of the entire distribu-

25



Figure S11: Cross-comparing measures reveals more diversity. Over-
all, the different measures agree that most repeated measurements yield similar
results. However, they often disagree in that one considers a pair of two mea-
surements to be similar while the other measure considers the same to differ.
Here, we show three cross-correlations of measures (A-C). Simply put, if the
measures agreed, all diagonals would be black, and everything else would be
white (blank cells mean that the particular pair of interface similarities has not
been observed). The uppermost rightmost cells correspond to very high inter-
face similarity according to both measures and also show the exact percentage
of the respective combination. All plots show DSameSeq distributions.

tion, i.e. all possible range combinations, then obviously required three axes:
one determining the value of the first measure; one the value of the second mea-
sure; and one the probability of observing both similarity values at the same
time. Simple matrix plots displayed this: the first measure was assigned to the
x-axis and the second measure to the y-axis. The square at a particular x-y
coordinate then corresponded to the occurrence of this particular combination
of interface similarity: The darker the square, the more often the combination
was observed. Hypothetically, these distributions could again be derived for
distributions DSameSeq to DInterolog. The relations between the measures is
already evident for DSameSeq, however, so that we limited the analysis to com-
parisons between interfaces from the same sequence pair (DSameSeq). Results
are presented in Fig. S11.

If one measure suggests that an interface is identical between repeated ob-
servations and another that it differs, which one is right? Clearly, the cross-
correlation of measures adds to the view that interfaces have some flexibility to
cope with change. In 62% of all comparisons, both Face Position Similarity and
L rms agree that the interfaces between two measurements were largely iden-
tical (Fig. S11A). The remaining 38% mainly appeared in ranges above 0.5 in
both measure, with a slight tendency of L rms to be more sensitive than Face
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Position Similarity. This trend strikingly manifests itself for L rms values above
9 (7% of all comparisons): here, we see at least some population in every range
of Face Position Similarity. Apparently, conformational changes of the entire
protein can lead to high RMSDs, but preserve the interfaces to a point where
no interface residue changes are detectable. The matrix comparison between
Convex Hull Overlap and L rms shows a similar trend, but is more pronounced
(Fig. S11C). Now, we observe almost any pair of similarities. Again, highest
L rms is often accompagnied by intermediate Convex Hull Overlap. Note that
both measures agree on conservation of an interface pair in only 51% of all cases.
This means that there is a 49% chance that the same interfaces from two differ-
ent PDBs will differ from each other by at least one measure. Comparing Face
Position Similarity and Convex Hull Overlap, finally, we see that Convex Hull
Overlap is significantly more sensitive (Fig. S11B). It assigns lower values to
the same interface pair in about 27% of all cases, while Face Position Similarity
does the same in only 2%. In case the two measures differ, the difference is
usually not large: most values are close to the diagonal and there are no cases
where one measure assigns highest difference and the other highest similarity.

S7 Additional Sample Structures

In the following, we discuss cases of differing interfaces for the same pair of
sequences. They add to the picture of binding diversity.

Yersinia pestis (Fig. S12A) represents one of the very few cases of clear
alternative binding between two interfaces with copy number 1 (Section S5). All
measures agree in this finding. The antigen usually forms fibers by repeatedly
binding to itself. In the two structures displayed here, this has been disabled
by mutating the N terminus in various ways. What remains are two original
interactions with a chaperone protein, representing snapshots of different stages
in the fiber assembly process. Note that 1P5U has actually three chains with
two corresponding to the antigen, but only one of them also corresponds to the
N-modified variant present in the binary structure 1P5V.

Choleraholotoxin is an extreme case of an interaction with Face Position Sim-
ilarities almost exclusively lying in the intermediate range 0.1-0.9 (Fig. S12E,
Fig. S13C,D). The shorter B chain forms a cyclic homo-pentamer with a pore
in the middle. The A subunit occupies this space with a terminal loop. This
results in several different binding positions of a single B chain on the A subunit
in one PDB structure. Furthermore, another structure of the same complex re-
veals that the pentamer exhibits some translational freedom with respect to the
A subunit, leading to even more interface diversity. These types of rotational
interfaces can generally be found by cross-correlating the measures Sphere Ra-
dius Ratio and Face Position Similarity. A high Sphere Radius Ratio suggests
that interface sizes and locations are conserved. If the Face Position Similarity
is low, change must therefore come from a rotation around a central axis. Only
in this way, we preserve the radius and position and yet change the residues of
the face.

27



For hemoglobin, (Fig. S12C), a clustering should easily interpret the two big
interface ’cloud’ as such and identify two distinct binding modes. This is further
supported by the distribution of pairwise interface similarities (Fig. S13C) that
is mainly populated either in regions of low (0.0-0.2) or high similarity (0.9-1.0).
Closer inspection, however, reveals that the clouds are by no means biologically
irrelevant: A main contributor to their variety for example is the change of
hemoglobin from the T to the R conformation when releasing or binding oxy-
gen. A typical clustering would not only miss this conformational change, but
also its seemingly continuous nature with many intermediate states. Note, how-
ever, that a detailed functional annotation of each interface according to the
conformational state could improve that.

We discuss Cytochrome BC1 and Type IV collagen in the caption of Fig.
S12 and RuBisCO in the next Section.

Difference in Number of Interacting Families

Over 7% of all interface comparisons suggest a difference in the domain families
that interact (Fig. S10). Two examples illustrate the above conclusion that
many of those are limits in the reliability of our domain/family definition. The
first is RuBisCO (Fig. S13A) that has a short chain (single domain, single
domain family). It has evolved three clearly distinct binding positions on the
large chain (2 domains, 2 domain families). Two of these faces fall on the
same domain; the third falls on a different domain. Consequently, we see two
different family pairings in the same pair of proteins. The second example is the
complex of aldolase-dehydrogenase (Fig. S13B). The two aldolase domains both
contribute almost equally to one interface while on the other interface, only the
catalytic domain interacts with the dehydrogenase. The same pattern is true
for the comparisons between the faces on the two-domain dehydrogenase (not
shown).

S8 Functions of Families With and Without In-
terface Variability

We collected interacting families which show absolutely no sign of interface
variability (0.9-1.0 bin in distribution DInterolog at 100% with Face Position
Similarity). Then, we determinded the GO terms of the proteins in each of
these family pairs and counted how many family pairs were associated with a
particular GO term. We show the results in the first half of the following table.
Then, we performed the same analysis for family pairs which show very high
interface variability (0.0-0.5 bins in distribution D-Interolog sum up to 100%
with Face Position Similarity). In both tables, the column ”Unique” indicates
that the respective GO term was only found in that particular group of family
pairs. Terms which only appeared once in either group are not shown.

28



References

[1] C. Barber, K. Henrick, D. Dobkin, and H. Huhdanpaa. The Quickhull Al-
gorithm for Convex Hulls. ACM Transactions on Mathematical Software,
22(4):469–483, 1996.

[2] T. G. O. Consortium. Gene ontology: Tool for the unification of biology.
Nature Genetics, 25(1):25–29, 2000.

[3] K. Henrick and J. M. Thornton. Pqs: a protein quaternary structure file
server. Trends in Biochemical Sciences, 23(9):358 – 361, 1998.

[4] E. Krissinel and K. Henrick. Detection of Protein Assemblies in Crystals.
Lecture Notes in Computer Science, 3695:163–174, 2005.

[5] E. Krissinel and K. Henrick. Inference of macromolecular assemblies from
crystalline state. Journal of Molecular Biology, 372(3):774 – 797, 2007.

[6] M. F. Lensink, R. Mndez, and S. J. Wodak. Proteins: Structure, Function,
and Bioinformatics, 69(4):704–718, 2007.

[7] E. D. Levy. PiQSi: Protein Quaternary Structure Investigation. Structure,
15(11):1364–1367, 2007.

[8] M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell,
N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. L.
Sonnhammer, S. R. Eddy, A. Bateman, and R. D. Finn. The pfam protein
families database. Nucleic Acids Research, 40(D1):D290–D301, 2012.

29



Figure S12: Six additional interactions with surprising interface va-
riety. Each panel (A-F) shows superimpositions of multiple heterodimers with
sequences X (dark green, note: all green have RMSD<1Å to each other) and
Y. The interacting chains Y were subject to the same geometric translations as
their X counterpart and are displayed in cyan. (A) The rare case (Section S5)
of large interface differences when looking at two structures with interface copy
number 1 (1P5U, 1P5V). (B) Example for ’low Interface Position Similarity
with high Face Position Similarity’ (1PP9, 2FYU): lower frame: comparison
of two structures of Iron-sulfur subunit precursor (cyan) interacting with core
protein 1 (green); upper frame: iron-sulfur subunit precursor superimposition
in detail; black and gray: identical subsequences at different spatial locations;
green and blue: different subsequences at same spatial location. (C) Super-
imposition of 251 Hemoglobin complexes (e.g. 1A3N); lower left side frame:
superposition of two sample faces of upper interface cloud; face residues (blue
and red) colored by chain; lower right side frame: one sample complex of each
interface cloud; also see Fig. S13C (D) Ribulose-1,5-bisphosphate carboxylase
oxygenase (1AA1): three highly distinct binding positions; also see Fig. S13A
(E) Even distribution of Face Position Similarity vs. constantly high Sphere
Radius Ratio (1S5C, 1S5D); upper frame: side view; lower frame: view from
top; also see Fig. S13 (F) High Amino Acid Coupling vs. low Interface Position
Similarity (1M3D, 1T61); upper frame: X consists of two homologous domains
(domain boundary indicated by separating line) and interacts with Y at two dif-
ferent positions; dark blue used instead of cyan to show chain boundaries; lower
frame: domains of X superimposed (domains highly homologous; sequences not
shown).



Figure S13: Multi-domain proteins interacting through different
SCOP families and difficult cases of interface clustering. Colors as
in Fig. S12; exceptions: second domain of X is orange, second domain of Y
is blue; interface residues in red. (A) RuBisCO from Fig. S12B; interfaces
magnified; the short chain (cyan; one domain) has two binding positions on the
green domain of the large chain and one on the orange domain. (B) Aldolase-
Dehydrogenase complex (1NVM); Aldolase domains: green and orange; De-
hydrogenase domains: cyan and blue; Aldolase faces magnified; in the first
interaction, only the green domain contributes to the face (upper frame); in the
second, both the green and the orange domain are involved (lower frame). (C)
Comparison of the Face Position Similarity distribution of two Level SameSeq
groups corresponding to Hemoglobin (Fig. S12C) and Choleraholotoxin (Fig.
S12E, S13D). (D) Superimposition of two diverse Choleraholotoxin interactions;
created from Fig. S12E by removing all but two Y chains.
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GO Number GO Term Family Pairs
(max. 17)

Unique

GO:0003674 molecular function 16 No
GO:0005488 binding 16 No
GO:0043169 cation binding 11 No
GO:0043167 ion binding 11 No
GO:0046906 tetrapyrrole binding 7 Yes
GO:0051540 metal cluster binding 6 No
GO:0016787 hydrolase activity 6 No
GO:0003824 catalytic activity 6 No
GO:0051536 iron-sulfur cluster binding 6 No
GO:0004175 endopeptidase activity 5 No
GO:0008233 peptidase activity 5 No
GO:0046872 metal ion binding 5 No
GO:0070011 peptidase activity, acting on L-amino acid peptides 5 No
GO:0046914 transition metal ion binding 4 No
GO:0030234 enzyme regulator activity 3 No
GO:0030246 carbohydrate binding 2 Yes
GO:0008236 serine-type peptidase activity 2 Yes
GO:0004857 enzyme inhibitor activity 2 No
GO:0017171 serine hydrolase activity 2 Yes
GO:0015077 monovalent inorg. cation transmembr. transp.

act.
2 No

GO:0070003 threonine-type peptidase activity 2 Yes
GO:0005506 iron ion binding 2 Yes
GO:0005215 transporter activity 2 No
GO:0008324 cation transmembrane transporter activity 2 No
GO:0022891 substrate-specific transmembrane transporter ac-

tivity
2 No

GO:0022890 inorganic cation transmembrane transporter activ-
ity

2 No

GO:0022892 substrate-specific transporter activity 2 No
GO:0015078 hydrogen ion transmembrane transporter activity 2 No
GO:0015075 ion transmembrane transporter activity 2 No
GO:0022857 transmembrane transporter activity 2 No
GO:0005515 protein binding 2 No

Table S2: GO Terms of families with exclusively alternative interfaces
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GO Number GO Term Family Pairs
(max. 18)

Unique

GO:0003674 molecular function 17 No
GO:0005488 binding 16 No
GO:0043169 cation binding 11 No
GO:0043167 ion binding 11 No
GO:0003824 catalytic activity 10 No
GO:0005515 protein binding 10 No
GO:0046872 metal ion binding 9 No
GO:0016787 hydrolase activity 6 No
GO:0000166 nucleotide binding 5 No
GO:0017076 purine nucleotide binding 5 No
GO:0008092 cytoskeletal protein binding 5 Yes
GO:0030554 adenyl nucleotide binding 5 No
GO:0001883 purine nucleoside binding 5 No
GO:0001882 nucleoside binding 5 No
GO:0046914 transition metal ion binding 4 No
GO:0032559 adenyl ribonucleotide binding 4 No
GO:0032555 purine ribonucleotide binding 4 No
GO:0032553 ribonucleotide binding 4 No
GO:0016491 oxidoreductase activity 4 No
GO:0008233 peptidase activity 3 No
GO:0019899 enzyme binding 3 No
GO:0005102 receptor binding 3 Yes
GO:0030528 transcription regulator activity 3 Yes
GO:0030234 enzyme regulator activity 3 No
GO:0070011 peptidase activity, acting on L-amino acid peptides 3 No
GO:0004866 endopeptidase inhibitor activity 2 No
GO:0060089 molecular transducer activity 2 No
GO:0003712 transcription cofactor activity 2 Yes
GO:0019900 kinase binding 2 Yes
GO:0019902 phosphatase binding 2 Yes
GO:0044212 transcription regulatory region DNA binding 2 Yes
GO:0016563 transcription activator activity 2 Yes
GO:0003676 nucleic acid binding 2 No
GO:0003677 DNA binding 2 Yes
GO:0043565 sequence-specific DNA binding 2 Yes
GO:0022891 substrate-specific transmembr. transp. act. 2 No
GO:0022892 substrate-specific transporter activity 2 No
GO:0051536 iron-sulfur cluster binding 2 No
GO:0015075 ion transmembrane transporter activity 2 No
GO:0046983 protein dimerization activity 2 No
GO:0004857 enzyme inhibitor activity 2 No
GO:0008237 metallopeptidase activity 2 No
GO:0042802 identical protein binding 2 No
GO:0005215 transporter activity 2 No
GO:0008134 transcription factor binding 2 Yes
GO:0008324 cation transmembrane transporter activity 2 No
GO:0048037 cofactor binding 2 Yes
GO:0030414 peptidase inhibitor activity 2 No
GO:0004175 endopeptidase activity 2 No
GO:0051540 metal cluster binding 2 No
GO:0003702 RNA polymerase II transcription factor activity 2 Yes
GO:0022857 transmembrane transporter activity 2 No

Table S3: GO Terms of families without interface variability
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