
Protocol S1: Inferring Dynamic Signatures of Microbes in
Complex Host Ecosystems

1 Overview

MC-TIMME is based on Dirichlet Process Infinite Mixture Models (DP IMMs), which are a class of non-
parametric Bayesian models. DP IMMs can be derived as the limit of Finite Mixture Models (FMMs),
which assume that data y arise from a weighted mixture of K probability distributions:

p(y | θ,π) =
K∑
k=1

πkφ(y; θk)

Here, π are mixture weights (probabilities) such that
∑K

k=1 πk = 1, θk are the parameters for mixture
component k, and φ(·; ·) is a probability density function for the mixture components.

For the MC-TIMME model, the mixture components are the continuous-time and continuous-valued
prototype signatures. Each prototype signature is characterized by a set of variables that specify the shape
of the signature. The number of variables used to model the shape of each signature is adaptively learned
by MC-TIMME. Additionally, latent (hidden) variables are used to assign the observed sets of sequencing
counts to prototype signatures.

Figure 1 depicts the MC-TIMME generative model structure in graphical model form with plate nota-
tion. The model is hierarchical, with variables at higher levels parameterizing prior distributions for variables
at lower levels.

The data generation model is as follows. Assume that we have observed counts of sequencing reads for
Os refOTUs in S subjects at Ts time-points, with each data point denoted by ysot. Prototype signatures are
associated with mixture weights π and parameters Θ. Each refOTU o in subject s is assigned to a prototype
signature via a variable zso | π ∼ Multinomial(π). For a given prototype signature k, θk is a parameter
vector specifying a continuous-time and continuous-valued function, as described in Section 3. We assume
that the conditional distribution for the observation ysot is the Negative Binomial Distribution (NBD), with
mean parameterized by the function f(t,θk), and variance controlled by parameters ε:

ysot | zso = k,θk ∼ Neg-Bin(ef(t,θk)+γso+ψst , ε) (1)

Here, γso and ψst are offset terms that specialize the underlying prototype signature to an individual signa-
ture for refOTU o in subject s (see Section 2).

Thus, the data is assumed to be generated via a conditional Generalized Linear Model (GLM) using the
Negative Binomial Distribution, with parameterization dependent on the prototype signature to which the
data is assigned.
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Figure 1: The MC-TIMME model depicted in graphical model form. Circles represent random variables and edges
represent dependencies. Rectangles (plates) represent repeated variables. For example, the variable ysot represents the
observed counts for refOTU o in subject s at time-point t. This variable lies within three overlapping plates, which
represent repetition over S subjects, Os refOTUs, and Ts time-points. Arrows pointing into ysot indicate that this
variable depends directly on several others. The variable zso represents a probabilistic assignment of refOTU o in
subject s to a particular prototype signature. The variables γso and ψst are offset terms that specialize the prototype
signature to a refOTU specific individual signature. The vector of variables ε controls the variability of observed data
generated by each individual signature. The variables µk0, δkX , δkµ and λk specify the shape of prototype signature k.
The variables ckµ and ckλ control the dimensionality of the prototype signature (e.g., the number of active variables).
The infinity sign in the corner of the plate surrounding these variables indicates that there are a potentially unlimited
number of prototype signatures. Note that the model also uses an additional level of hyperparameters for the prior
distributions, which are not shown for clarity.
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The mixture weights π are assumed to have a stick-breaking prior, π ∼ Stick(α), where α is a concen-
tration parameter. The stick-breaking prior generates a countably infinite partition of the unit interval [0,1],
with the “evenness” of the partition controlled by the concentration parameter α. The stick-breaking prior
on π is defined constructively as:

π′j | α ∼ Beta(1, α)

πj = π′j

j−1∏
l=1

(1− π′l)

See [1] for further details regarding the stick-breaking prior formulation for the Dirichlet Process.

2 Signature offset terms

The term ψst specifies the offset from a prototype signature, specific to subject s at time-point t. This offset
serves to standardize the samples to compensate for differing numbers of sequencing reads. This offset is
estimated from data using the formula:

ψst = log(
∑
o

ysot)−medianτ{log(
∑
o

ysoτ )}

The term γso specifies the offset from a prototype signature, specific to refOTU o in subject s. This
offset serves to standardize refOTU o according to its average abundance over time, and thus highlights the
shape of the individual signature, rather than its absolute magnitude, for comparing individual signatures
across refOTUs. This offset is estimated from data using the formula:

γso =

∑
t log(ysot + ι)− ψst

Ts

Here, ι = 0.25 to avoid taking the logarithm of zero.

3 Dynamical model for antibiotic pulse experiments

3.1 Specification

We assume that dynamics may differ over five intervals delimited by the antibiotic treatments in the ex-
periments: (a) pre-antibiotic, (b) antibiotic treatment one, (c) post-antibiotic treatment one, (d) antibiotic
treatment two, and (e) post-antibiotic treatment two. The main dynamics of interest, with regards to the
extent of recovery or alterations in the commensal flora, occur on intervals (c) and (e).

We assume that dynamics for prototype signature k on interval (c), the period after the first antibiotic
treatment, are specified by the following differential equation:

η̇kc(t) =
1

λkc
{µkc − ηkc(t)}

Solving for ηkc(t), we get:

ηkc(t) = fc(t,Xkb, µkc, λkc) = Xkbe
−t/λkc + µkc(1− e−t/λkc) (2)
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The dynamical model on interval (c) thus specifies a relaxation process with initial valueXkb that reaches
to equilibrium level µkc with relaxation time λkc.

For the second post-antibiotic exposure interval, (e), we assume a similar model but with initial value
Xkd, equilibrium level µke, and relaxation time λke:

ηke(t) = fe(t,Xkd, µke, λke) = Xkde
−t/λke + µke(1− e−t/λke) (3)

For the pre-antibiotic exposure interval (a), and the two antibiotic exposure intervals (b) and (d), we
assume constant values for the equilibrium levels:

ηka(t) = µka

ηkb(t) = Xkb

ηkd(t) = Xkd

For the parameter controlling NBD variance, we assume it is equal to ε1 on intervals (a), (c) and (e), and
equal to ε2 on the antibiotic treatment intervals.

We assume the parameters of adjacent intervals are dependent via Gaussian random walks:

µka ∼ Normal(β0, ρ20)

Xkb = µka + δkµa→b s.t. δkµa→b ∼ Normal(0, ρ2X)

µkc = µka + δkµa→c s.t. δkµa→c ∼ Normal(0, ρ2µ)

Xkd = µkc + δkµc→d s.t. δkµc→d ∼ Normal(0, ρ2X)

µke = µkc + δkµc→e s.t. δkµc→e ∼ Normal(0, ρ2µ)

We specify the relaxation time parameters λkc and λke as follows. To reflect the time-scale of the
experiments, it’s desirable to constrain these parameters within specified ranges. This is accomplished using
softmax functions:

λkc =
1

1 + e−ξkc
{λmax − λmin}+ λmin

ξkc ∼ Normal(βλc , ρ
2
λc)

Here, λmax and λmin specify maximum and minimum values for the relaxation time parameters.
We assume that λkc and λke are depedent via a Gaussian random walk:

λke =
1

1 + e−(ξkc+ξke)
{λmax − λmin}+ λmin

ξke ∼ Normal(0, ρ2λe)
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3.2 Dimensionality adaptation

To adapt the structural complexity of the dynamical model for prototype signatures, we introduce dimen-
sionality changing variables, ckµ and ckλ. These variables are both discrete-valued, and act as ”switches”
to control the number of distinct equilibrium levels or relaxation time parameters utilized by each prototype
signature.

The variable ckµ specifies one of four configurations for the equilibrium levels:

ckµ = 1⇒ δkµa→c = δkµc→e = 0⇒ µka = µkc = µke

ckµ = 2⇒ δkµa→c 6= 0, δkµc→e = 0⇒ µka 6= µkc = µke

ckµ = 3⇒ δkµa→c = 0, δkµc→e 6= 0⇒ µka = µkc 6= µke

ckµ = 4⇒ δkµa→c 6= 0, δkµc→e 6= 0⇒ µka 6= µkc 6= µke

The variable ckλ specifies one of two configurations for the relaxation time parameters:

ckλ = 1⇒ ξke = 0⇒ λkc = λke

ckλ = 2⇒ ξke 6= 0⇒ λkc 6= λke

4 Priors

4.1 Specification

For the parameters ε1 and ε2, which control the NBD noise model variance, we assume a normal prior on
transformed values of ε1 and ε2, with hyperparameters mε and σε:

ε1 = eξε1 s.t. ξε1 ∼ Normal(mε1 , σ
2
ε1)

ε2 = eξε2 s.t. ξε2 ∼ Normal(mε2 , σ
2
ε2)

For α, the DP concentration parameter, we assume a gamma prior with hyperparameters ωα:

α ∼ Gamma(ωα)

For β0, the mean for pre-antibiotic equilibrium levels µk0, we assume a normal prior with hyperparam-
eters mβ0 and σβ0 :

β0 ∼ Normal(mβ0 , σ
2
β0)

For ρ0, the variance for pre-antibiotic equilibrium levels µk0, we assume an inverse χ2 distribution with
hyperparameters vρ0 and νρ0 :

ρ0 ∼ Inv-χ2(vρ0 , νρ0)

For ρµ and ρX , the variances for δkµ and δkX variables, we assume inverse χ2 distributions with correspond-
ing v and ν hyperparameters:

ρµ ∼ Inv-χ2(vρµ , νρµ)

ρX ∼ Inv-χ2(vρX , νρX )
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For βλc , the mean for ξkc, which controls the relaxation time on interval (c), we assume a normal
distribution with hyperparameters mβλc

and σβλc :

βλc ∼ Normal(mβλc
, σ2βλc )

For ρλc , the variance for ξkc, we assume an inverse χ2 distribution with hyperparameters vρλc and νρλc :

ρλc ∼ Inv-χ2(vρλc , νρλc )

For ρλe , the variance for ξke, we assume an inverse χ2 distribution with hyperparameters vρλe and νρλe :

ρλe ∼ Inv-χ2(vρλe , νρλe )

For ckµ and ckλ, the parameters controlling dimensionality of prototype signature dynamics models, we
assume a multinomial distribution with parameters πµ and πµ, and Dirichlet distribution priors with hyper-
parameters ωπµ and ωπλ .

4.2 Setting hyperparameters

For the concentration parameter α ∼ Gamma(ωα), we set its hyperparameters ωα1 = ωα2 = 10−5 for a
weak prior with mean 1 and variance 105. See Section 7.1 for a sensitivity analysis of these hyperparameters.

We set the means and variances of prior distributions empirically from the data as follows. To set the
hyperparameters, mε and σε, specifying the priors for the variables controlling the NBD variances in the
data noise model, we first computed maximum likelihood estimates for NBD variance parameters using the
antibiotic exposure time-points for each refOTU. We then log transformed these estimates, and set mε1 and
σε1 equal to the means and variances of the log transformed estimates. The same procedure was done, using
the pre-antibiotic exposure time-points, to set mε2 and σε2.

We set the hyperparameters specifying priors for the variables controlling the prototype signature dy-
namical models as follows. We first log transformed the counts data after adding a small increment of
ι = 0.25 to avoid taking the log of zero.

For the antibiotic exposure interval (a), we computed the mean, µ̂soa and variance σ̂2soa of the trans-
formed data for each refOTU o in each subject s. We set mβ0 = mean(µ̂soa) and σ2β0 = var(µ̂soa).

For the two post-antibiotic exposure intervals (c) and (e), we performed a non-linear least squares fit to
estimate the parameters in equation 2 or 3 on the transformed data for each refOTU in each subject. The
estimates for the equilibrium levels µ̂soc and µ̂soe, and relaxation time parameters λ̂soc and λ̂soe were then
used to set σρµ ,mβλc

, σβλc , and σβλe respectively, using the means or variances of the estimated parameters.
For the antibiotic exposure intervals (b) and (d), we computed the means, X̂sob and X̂sod, for each

refOTU and subject. We then set σ2ρX equal to the variance of estimated increments X̂sob − µ̂soa and
X̂sod − µ̂soc.

The hyperparameter ν in the inverse χ2 distribution can be interpreted as a prior sample size. We set
ν = 5, a small prior sample size, for a weak prior.

The hyperparameters ωπµ and ωπλ control the Dirichlet prior on the dimensionality changing variables
ckµ and ckλ. These hyperparameters can be interpreted as prior sample sizes. We set ωπµ = (1, 1, 1, 1) and
ωπλ = (1, 1), to yield symmetric Dirichlet distributions specifying a prior sample size of 1. See Section 7.1
for a sensitivity analysis of these hyperparameters.
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5 Model inference

The inference task for MC-TIMME is to estimate the posterior distribution of all model variables given
the observed data. We developed an efficient Markov Chain Monte Carlo (MCMC) algorithm for this task.
Our solution uses a combination of Gibbs sampling, Metropolis-Hastings (MH)/Reversible Jump (RJ), and
auxiliary variable augmentation steps.

The MCMC sampling loop is as follows:

1. Sample zso, the assignment of refOTU o in subject s to a prototype signature.

2. Sample prototype signature dynamical model variables µk0, δk, λk, ckµ and cλµ.

3. Sample variables ε1 and ε2 controlling NBD variance.

4. Sample α, the DP concentration parameter.

5. Sample β and ρ variables controlling means and variances of dynamical model variables.

6. Sample πµ and πµ variables specifying the distribution on dimensionality changing variables.

5.1 Step 1: sampling assignments of refOTUs to prototype signatures

For the first step in the MCMC loop, we use the Gibbs sampling method outlined in [2]. We sample the
assignment zso for refOTU o in subject s, conditional on all the data and other model variables including
assignments of the other refOTUs. In this step there are two cases: refOTU o in subject s is assigned to an
existing prototype signature k, or it is assigned to a new prototype signature. The update equations are then:

p(zso = k | z−so, α,Θ,y) ∝
n−sok

O − 1 + α
p(yso | θk) for n−sok > 0 (4)

p(zso 6= zl,∀ l 6= so | z−so, α,Θ,y) ∝ α

O − 1 + α
p(yso | θ∗) (5)

Here, n−sok is the number of refOTUs assigned to prototype signature k excluding refOTU o in subject
s, z−so is the assignments of all refOTUs excluding refOTU o in subject s, and O is the total number of
refOTUs across all subjects. The variable θ∗ represents the parameters for a new prototype signature. The
data likelihood for yso is given by:

p(yso | θk) =

Ts∏
t=1

Neg-Bin(ysot; e
f(t,θk)+γso+ψst , ε)

The Gibbs sampling procedure thus either assigns the refOTU to an existing prototype signature, or gen-
erates a new prototype signature. Because the prior distribution for the prototype signature variables is
non-conjugate, it is not possible to analytically integrate out θ∗. Thus, we follow the method outlined
by [2], and sample θ∗ from its prior distribution. Because the sample from the prior distribution is unbiased,
this method will sample correctly from the underlying posterior distribution.
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5.2 Step 2: sampling prototype signature shape variables

For the second step in the MCMC loop, sampling prototype signature shape variables, µk0, δk, λk, ckµ and
ckλ, we use MH/RJ steps.

For a particular prototype signature k, conditional on λk and ck, we have a Generalized Linear Model
(GLM) using the NBD. We can write the parameterization of prototype signature k at time t in terms of
canonical GLM parameters as:

h(eηk(t)) = ηk(t) = Akt(λk, ck)
′Gkt(µk0, δk, ck)

The NBD variance is given by:
b(eηk(t)) = eηk(t) + e2ηk(t)εi

Here, h(·) denotes the link function, which in this case equals the natural logarithm function. The variable
Akt is a vector of regression coefficients that depends on the relaxation time and dimensionality changing
parameters, andGkt is the vector of independent variables for the GLM. Note thatAkt andGkt will change
dimension depending on the setting of ck.

We leverage this formulation of the model as a conditional GLM to generate good linear approximations
to use as MH proposal distributions, using the method described by [3]. These approximations are directly
connected to Weighted Least Squares (WLS) methods, which are often used for maximum likelihood esti-
mates for GLM parameters.

The procedure for creating a WLS estimate is as follows. We first create transformed data values ỹsot
for all data points assigned to prototype signature k:

ỹsot = ηk(t) + (ysot − eηk(t)+γso+ψst)h′(eηk(t)+γso+ψst) (6)

We then use the transformed data values to generate a diagonal weight matrixWk:

W−1ksot = b(eηk(t)+γso+ψst){h′(eηk(t)+γso+ψst)}2 (7)

The moments for the proposal distribution used in the MH steps are then given by:

m
(j−1→j)
k = {(Λ−1)(j−1→j) +A

′(j−1→j)
k W

(j−1→j)
k G

(j−1→j)
k A

(j−1→j)
k } ×

{(Λ−1)(j−1→j)d(j−1→j) +A
′(j−1→j)
k W

(j−1→j)
k ỹ(j−1→j)} (8)

C
(j−1→j)
k = {(Λ−1)(j−1→j) +A

′(j−1→j)
k W

(j−1→j)
k }−1 (9)

The vector d represents the prior mean for the GLM, i.e., d1 = β0 and zero otherwise. The matrix Λ is the
prior covariance for the GLM, i.e., Λ11 = ρ20 and zero otherwise.

The MCMC iteration number is indexed by j, and the notation (j − 1→ j) indicates a move from state
j − 1 to j in the MCMC sampler. To match dimensionality, the dimension of the target state is always used,
e.g.,A(j−1→j)

k = A(λ
(j−1)
k , c

(j)
k ).

For each prototype signature k, the MH/RJ move from state j − 1 to j will then sample c(j)k , λ(j)
k , µ(j)k0 ,

and δ(j)k as follows:

1. Sample c(j)kµ and c(j)kλ from symmetric multinomial proposal distributions.
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2. Sample ξkλc from a normal proposal distribution with mean ξ(j−1)kλc
and fixed variance σ2λcκλc . If

ckλ = 2, then sample ξλe from a normal proposal distribution with mean ξ(j−1)kλe
and fixed variance

σ2λeκλe . Otherwise, set λke = 0.

3. Calculate the WLS proposal distribution moments m(j−1→j)
k and C(j−1→j)

k as described above, and
sample µ(j)k0 and δ(j)k from the proposal distribution Normal(m(j−1→j)

k ,C
(j−1→j)
k ).

Here, κλ are parameters used to tune the acceptance rate to ≈ 0.23, the conventionally used acceptance
rate for multi-dimensional MH (see [4] for details).

The acceptance probability q(j − 1→ j) for the move is given by:

q(j − 1→ j) = min

{
1,
q1
q2

}
q1 = lk(y; µ

(j)
k0 , δ

(j)
k ,λ

(j)
k , c

(j)
k , ε) · p(µ

(j)
k0 , δ

(j)
k ,λ

(j)
k , c

(j)
kµ , c

(j)
kλ | β,ρ,πµ,πλ) · J (j−1←j)

q2 = lk(y; µ
(j−1)
k0 , δ

(j−1)
k ,λ

(j−1)
k , c

(j−1)
k , ε)·p(µ

(j−1)
k0 , δ

(j−1)
k ,λ

(j−1)
k , c

(j−1)
kµ , c

(j−1)
kλ | β,ρ,πµ,πλ)·J (j−1→j)

Here, p(µ
(j)
k0 , δ

(j)
k ,λ

(j)
k , c

(j)
kµ , c

(j)
kλ | β,ρ,πµ,πλ) is the product of prior distributions for µk, δk, λk, ckµ

and ckλ, as described in Section 3.
The term J (j−1→j) indicates the jumping probability, and is given by the product of the proposal dis-

tributions for ξ(j)kλ , µ(j)k0 and δ(j)k starting from ξ
(j−1)
kλ , µ(j−1)k0 and δ(j−1)k . The reverse jump, J (j−1←j) is

calculated analogously, by forming the product of the proposal distributions for ξ(j−1)kλ , µ(j−1)k0 and δ(j−1)k

starting from ξ
(j)
kλ , µ(j)k0 and δ(j)k .

The function lk(y; µk0δk, ε) is the data likelihood restricted to data assigned to prototype signature k:

lk(y; µk0, δk, ε) =
∏

s,o : zso=k

∏
t

Neg-Bin(yso; e
ηk(t)+γso+ψst , ε)

5.3 Step 3: sampling variables controlling NBD variance

We use MH steps for sampling ε1 and ε2. In this case, because we are sampling a single variable, we use a
simple proposal distribution of Normal(ξ(j−1)εi , κεiσ

2
εi) such that ε(j−1)i = eξ

(j−1)
εi . The parameter κεi is used

to tune the acceptance rate to ≈ 0.44, the conventionally used acceptance rate for single dimensional MH
(see [4] for details).

The acceptance probability for the εi MH steps is given by:

q(ε
(j−1)
i , ε

(j)
i ) = min

{
1,

l(y; Θ(j)) · Normal(ξ(j)εi ; mεi , σεi) · Normal(ξ(j−1)εi ; ξ
(j)
εi , κεiσ

2
εi)

l(y; Θ(j−1)) · Normal(ξ(j−1)εi ; mεi , σεi) · Normal(ξ(j)εi ; ξ
(j−1)
εi , κεiσ

2
εi)

}

5.4 Step 4: sampling the concentration parameter

For sampling the concentration parameter α, we use an efficient auxiliary variable sampling method as
described in [5].
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5.5 Step 5: sampling means and variances of dynamics variables

Sampling β and ρ is accomplished via straightforward Gibbs sampling steps [4], as these variables have
conjugate priors.

5.6 Step 6: sampling variables specifying the distribution on dimensionality changing vari-
ables

Sampling πµ and πµ is accomplished via straightforward Gibbs sampling steps [4], as these variables have
conjugate priors.

6 Experimental design algorithm

We use a greedy optimization algorithm with the Bayesian D-optimality function g(·) defined in the main
manuscript, to generate experimental designs (Figure 2).

GreedyExpDesign(T0,Tc,Y ,N ,J)
// T0 is an initial set of time-points
// Tc is the set of all time-points available
// Y is a set of prior observations
// N is the number of desired time-points in the design
// J is the number of MCMC samples to use

approximate p(Θ) with J MCMC samples using Y as data
T ← T0
while |T | ≤ N

find tm ∈ Tc that maximizes g({T ∪ tm},Θ(1), . . . ,Θ(J))
Tc ← {Tc\tm}
T ← T ∪ tm

end
return T

Figure 2: Pseudo-code for greedy experimental design algorithm.

Learning of sequential or cross-subject experimental designs was performed as follows. For sequential
designs, a small set of initial time-points Te was used for estimating hyper-parameters: the first and last days
of each antibiotic treatment, the first and last days of the entire series, and the first day before and after each
antibiotic treatment. MCMC samples were collected using the time-points Te, which were then used as input
into GreedyExpDesign to predict the next set of n time-points to sample. These time-points were then
concatenated with Te, and the process described above was repeated until the desired total number of time-
points was selected. For efficiency, we chose n = 6-8, depending on the number of time-points sampled
in the original dataset. For cross-subject designs, data from all time-points from subject A were used as
input to MC-TIMME, and MCMC samples were collected. These MCMC samples were then used as input
to GreedyExpDesign, to predict time-points to sample for subject B. This procedure was repeated for
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all pairs of subjects A and B. For each strategy, we produced a design that used 75% of the time-points
from the original experiments. To eliminate bias due to the chosen starting set Te, we required all designs
to include this set of time-points. To estimate predictive accuracy, we used values for all refOTUs at the
selected time-points, to fit the MC-TIMME model, and then calculated predictive error on the remaining
25% of held-out time-points. We used root mean squared error (RMSE) as the measure of predictive error,
which is the square root of the sum of squared differences between actual and predicted sequencing counts,
averaged over the number of refOTUs and time-points.

7 Tests

7.1 Sensitivity testing of model dimensionality adaptation

The MC-TIMME model adapts in dimensionality in two ways: (1) the number of equilibrium levels and
relaxation time parameters used by a prototype signature, and (2) the number of prototype signatures used
to model the ecosystem. The first type of adaptation is controlled by the discrete-valued variables ckµ and ckλ
for each prototype signature k. These variables are multinomial distributed with parameter vectors πµ and
πλ. We placed Dirichlet priors on the multinomial distributions. The second type of adaptation is governed
by a Dirichlet Process with concentration parameter α. We placed a gamma prior with hyperparameters
ωα on the concentration parameter α. The expected number of prototype signatures K is given by K ≈
α ln(N/α+ 1) [7], where N is the total number of refOTU time-series (756 for the dataset we analyzed).

To test the sensitivity of MC-TIMME’s dimensionality adaptation to hyperparameter settings, we varied
the hyperparameters on ckµ, ckλ, and α. For each test, we ran the algorithm 8 times, and then computed the
median and 95% credible intervals for Signature Diversity scores. In addition, we computed Normalized
Mutual Information (NMI) and Rand Index (RI) scores. The NMI and RI scores are external criteria of
clustering quality, which measure how well a particular cluster (i.e., assignment of refOTU time-series to
prototype signatures) compare to a gold standard [6]; NMI and RI values of 1 indicate perfect correspon-
dance between the clusterings. In this case, we used 8 runs of MC-TIMME using the default hyperparameter
settings as the gold standard. The median and credible intervals for the NMI and RI scores were computed
based on all pairs of scores between the default runs and a given test run. Figure 3 shows the results of our
sensitivity testing.

For ckµ, we tested a non-symmetric Dirichlet prior “skewed” toward πµ1 = 0.75 with the Dirichlet prior
equal to (3, 1, 1, 1), e.g., favoring no change in equilibrium levels, with 3 : 1 odds instead of the default of
1 : 1. Most of the signature diversity and NMI/RI score medians were virtually identical, and there were no
significant deviations in scores as assessed by overlap of credible intervals. Only the SD1λ score showed a
non-significant trend of being slightly elevated under the “skewed” prior.

For ckλ, we tested a non-symmetric Dirichlet prior “skewed” toward πλ1 = 0.75 with the Dirichlet prior
equal to (3, 1), e.g., favoring no change in the relaxation time parameter on the second antibiotic exposure
interval, with 3 : 1 odds instead of the default of 1 : 1. All the signature diversity and NMI/RI score medians
were virtually identical, and there were no significant deviations in scores as assessed by overlap of credible
intervals.

For the concentration parameter α, we tested two extreme values for the gamma prior mean, 10−3 and
103. These settings represent 1000X decreases or increases over the default mean of 1. For both the 10−3

and 103 settings, most signature diversity and NMI/RI score medians were virtually identical, and there were
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NMI RI SD3
D E F D E F D E F

default 0.92-0.95 0.99-0.99 0.48-0.49 0.75-0.79 0.45-0.52 0.71-0.75 0.80-0.97 0.75-0.97 0.79-0.97 22.7-23.4 10.0-10.3 16.6-17.5
cμ non-unif. 0.91-0.95 0.98-0.99 0.48-0.49 0.75-0.78 0.45-0.51 0.71-0.73 0.89-0.95 0.90-0.97 0.90-0.96 22.9-23.6 10.1-10.6 17.0-17.6
cλ non-unif. 0.91-0.95 0.99-0.99 0.48-0.49 0.76-0.78 0.45-0.50 0.71-0.73 0.75-0.94 0.69-0.93 0.73-0.95 22.6-23.6 9.9-10.5 16.7-17.3
alpha 10-3 0.91-0.95 0.99-0.99 0.48-0.49 0.76-0.78 0.47-0.50 0.71-0.73 0.80-0.97 0.80-0.99 0.86-0.98 22.5-23.3 9.9-10.3 16.6-17.3
alpha 103

0.91-0.95 0.99-0.99 0.48-0.49 0.76-0.79 0.46-0.51 0.71-0.74 0.85-0.96 0.87-0.97 0.88-0.97 22.7-23.7 9.9-10.5 17.0-17.6

 SD1μ SD1λ SD2

Figure 3: Sensitivity testing of MC-TIMME dimensionality adaptation to hyperparameter settings. Each test
consists of 8 MCMC runs. Default = default hyperparameter settings, cµ non-unif. = setting of Dirichlet prior on πµ
to (3, 1, 1, 1), cλ non-unif. = setting of Dirichlet prior on πλ to (3, 1), alpha 10−3 and 103 = setting of gamma prior
mean on α to 10−3 or 103. NMI = Normalized Mutual Information, RI = Rand Index, SD3 = Signature Diversity type
3 score (inter-ecosystem), SD1µ and SD1λ = Signature Diversity type 1 scores (intra-signature diversity) for subjects
D-F, SD2 = Signature Diversity type 2 scores (intra-ecosystem diversity) for subjects D-F.

no significant deviations in scores as assessed by overlap of credible intervals.
Our tests indicate that the model dimensionality (complexity) inferred by MC-TIMME showed little

sensitivity to changes in hyperparameter settings. A contributing factor to this result is the hierarchical
design of the MC-TIMME model. The model does not require direct setting of parameters for priors on
the variables affecting dimensionality adaptation, but instead uses a second level of hyperparameters. In
general, such hierarchical Bayesian models are less sensitive to prior distribution choices, as the parameters
of prior distributions are not fixed, and thus can adapt based on the underlying data [4].

7.2 Data simulations

We tested the ability of MC-TIMME to recover a “gold standard” set of signatures, by simulating data
with different amounts of added noise. Because a gold standard experimental dataset was not available, we
used the recovered signatures as described in the main manuscript as the reference signatures; we believe
this represents a more realistic scenario than a “toy” example with a small number of signatures. For each
level of noise, 8 simulated datasets were created by generating counts data from the reference signatures
using a negative binomial distribution (NBD) noise model. The NBD parameters controlling variance were
set equal to their empirically determined values from the Dethlefsen et al. data (1.0X setting, or ≈ 60%
coefficient of variation for counts). We also tested a lower level of noise (0.5X setting) and a higher level of
noise (1.5X setting). We computed the percent error for Signature Diversity scores and median relaxation
time parameter estimates, with 8 runs of the original dataset used as the gold standard. Normalized Mutual
Information (NMI) and Rand Index (RI) scores were also computed, as described in the previous section.

Figures 4 and 5 depict the results of our data simulations. The simulations using noise levels equal to
those in the original dataset (“1.0X ε”) are indicative of the performance of MC-TIMME in the presence of
a realistic amount of noise. However, noise levels in the original data are likely to be higher than in more
recent 16S phylotyping data sets, as Dethlefsen et al. produced data using the now obsolete Roche 454
FLX chemistry and with a relatively small number of sequencing reads per sample. In any case, the “1.0X
ε” simulations produced error rates for Signature Diversity scores of <≈ 10%, and for median relaxation
time parameters on the first post-antibiotic exposure interval of ≈ 25− 30%. The error rates for the median
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relaxation time parameters on the second post-antibiotic exposure interval were higher, at ≈ 30 − 45%.
These higher error rates were not unexpected, as the second post-antibiotic exposure intervals were sam-
pled at considerably fewer time-points than the first in the original experiments. For all simulations, NMI
scores were reduced by <≈ 20%, and RI scores were reduced by < 3%. The NMI score is likely to be
more representative of signature assignment consistency; the RI score has been shown to “saturate” with
many clusters in data [6]. We note that the number of prototype signatures was systematically lower with
increasing amounts of noise (not shown), suggesting that some fine details of signature shapes were lost as
noise was added.

0

0.1

0.2

0.3

0.4

0.5

0.6

%
 e

rr
or orig. data

0.5X ε
1.0X ε
1.5X ε

Figure 4: Data simulations. Each test consists of 8 MCMC runs. Orig. data = original data (not simulated), 0.5-
1.5X ε = simulated data from reference signatures, with negative binomial distribution (NBD) parameters controlling
variance set equal to 0.5, 1.0 or 1.5 times their empirically determined values from the Dethlefsen et al. data. Each bar
represents the percent error in estimating Signature Diversity scores or median relaxation time parameters, relative to
the original dataset. SD3 = Signature Diversity type 3 score (inter-ecosystem), SD1µ and SD1λ = Signature Diversity
type 1 scores (intra-signature diversity) for subjects D-F, SD2 = Signature Diversity type 2 scores (intra-ecosystem
diversity) for subjects D-F, λ1 = median relaxation time parameter for the first post-antibiotic exposure interval for
subjects D-F, λ2 = median relaxation time parameter for the second post-antibiotic exposure interval for subjects D-F.

Overall, our data simulations show that MC-TIMME can accurately estimate model parameters for com-
plex microbial ecosystems in the presence of realistic amounts of experimental noise. Signature diversity
scores exhibited the lowest error rates, likely because these scores are estimated using all refOTUs from
each subject, or from all subjects in the case of the SD3 score. Relaxation time parameter estimates, which
are estimated from prototype signatures comprised of potentially small groups of refOTUs, exhibited higher
error rates. These results provide estimates of bounds on distinguishability of differences in model param-
eters in the presence of noise. However, we note that these results may vary with the complexity of the
microbial ecosystems used as the reference “gold standard.”
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NMI % NMI med. RI % RI med.

reduction reduction

orig. data 0.92-0.95 N/A 0.99-0.99 N/A
0.5X ε 0.81-0.84 11% 0.97-0.98 1%
1.0X ε 0.75-0.81 17% 0.97-0.98 2%
1.5X ε 0.71-0.76 22% 0.96-0.97 3%

Figure 5: Data simulations. Each test consists of 8 MCMC runs. Orig. data = original data (not simulated), 0.5-
1.5X ε = simulated data from reference signatures, with negative binomial distribution (NBD) parameters controlling
variance set equal to 0.5, 1.0 or 1.5 times their empirically determined values from the Dethlefsen et al. data. NMI
= Normalized Mutual Information, % NMI med. reduction = percent reduction in NMI relative to original data, RI =
Rand Index, % RI med. reduction = percent reduction in RI relative to original data.

7.3 Subject effects

To test the effects on model estimation of excluding data from a particular subject, we ran MC-TIMME on
all pairs of subjects. Each test consisted of 8 MCMC runs. We compared the test runs to 8 runs on the
complete dataset, using all 3 subjects. Figures 6 and 7 display the results of these tests.

As depicted in Figure 6, the error rate for estimating Signature Diversity scores was <≈ 10% when
subject D or F was excluded. However, the error rate was higher when subject E was excluded. The
error rates for the relaxation time parameters followed similar trends, but were overall higher than for the
Signature Diversity scores, as noted in the previous section. Subjects D and F were least similar, in terms
of sharing of prototype signatures (SD3 score of 0.70), and subjects E and F were most similar (SD3 score
of 0.31). Inclusion of subject E with subject D or F lowered the error rate, as subject E shared a substantial
number of prototype signatures with both subjects D and F. This sharing of prototype signatures effectively
increases statistical power, because estimates of model parameters are derived from groups of refOTUs
rather than single instances.

Excluding any given subject did not affect the relative ordering of Signature Diversity scores. Further,
the effect of excluding any subject was about the same as having a realistic level of noise present in the data,
as shown in the previous section. Thus, given the level of noise in the dataset analyzed, MC-TIMME did not
appear to lose resolution when data from one subject was excluded. However, studies with more subjects
will be necessary to fully explore the effects of the number of subjects on model performance. For a large
number of subjects, it may prove useful to extend MC-TIMME to use an adaptive Hierarchical Dirichlet
Process prior to leverage similarities or differences among groups of subjects [8].
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Figure 6: Subjects effects. Each test consists of 8 MCMC runs. Each label indicates the subjects that were included
(e.g., DE = subjects D and E). Each bar represents the percent error in estimating Signature Diversity scores or median
relaxation time parameters, relative to the original dataset in which all subjects were present (DEF). SD1µ and SD1λ
= Signature Diversity type 1 scores (intra-signature diversity) for subjects D-F, SD2 = Signature Diversity type 2
scores (intra-ecosystem diversity) for subjects D-F, λ1 = median relaxation time parameter for the first post-antibiotic
exposure interval for subjects D-F, λ2 = median relaxation time parameter for the second post-antibiotic exposure
interval for subjects D-F.

NMI RI SD3
D E F D E F D E F

DEF 0.92-0.95 0.99-0.99 0.48-0.49 0.75-0.79 0.45-0.52 0.71-0.75 0.80-0.97 0.75-0.97 0.79-0.97 22.7-23.4 10.0-10.3 16.6-17.5
DE 0.83-0.87 0.96-0.97 0.58-0.59 0.74-0.77 0.46-0.50 N/A 0.70-0.94 0.65-0.92 N/A 20.8-21.8 9.2-9.7 N/A
DF 0.78-0.82 0.98-0.98 0.69-0.70 0.84-0.89 N/A 0.82-0.90 0.69-0.96 N/A 0.68-0.97 18.4-19.0 N/A 13.9-14.4
EF 0.77-0.83 0.98-0.99 0.30-0.32 N/A 0.41-0.46 0.71-0.73 N/A 0.56-0.98 0.63-0.98 N/A 9.0-9.3 16.8-17.2

 SD1μ SD1λ SD2

Figure 7: Subject effects. Each test consists of 8 MCMC runs. Row labels indicate the subjects that were included
(e.g., DE = subjects D and E). NMI = Normalized Mutual Information, RI = Rand Index, SD3 = Signature Diversity
type 3 score (inter-ecosystem; note that this applies only to the included subjects), SD1µ and SD1λ = Signature
Diversity type 1 scores (intra-signature diversity) for subjects D-F, SD2 = Signature Diversity type 2 scores (intra-
ecosystem diversity) for subjects D-F.
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