S1 Properties and Extension of Modified Tau

S1.1 Size and Velocity Effect

(a) Eta-function and m-Tau

(b) Eta-function Maxima)

Figure S1: The η-function. (a) Same as Figure $1 b$, but here two η-functions with $\alpha=13.2$ and $\alpha=9.4$ are shown. For comparison, two $\tau_{\bmod }$-functions with $\beta_{1}=0.5$ and $\beta_{1}=1$, respectively, are also plotted, whose maxima coincide with those of η (amplitudes of $\tau_{\text {mod }}$ functions were correspondingly rescaled). Note that both η-functions have a more pronounced decrease after the maximum than the corresponding $\tau_{\text {mod }}$-functions: Whereas the η functions approach zero before t_{c}, the $\tau_{\text {mod }}$-functions do not. The default maxima are marked by vertical bars, and correspond to stimulus parameters $t_{c}=1.2 \mathrm{~s}, x_{0}=1.3 \mathrm{~m}, v=1.08 \mathrm{~m} / \mathrm{s}$, and $l=2.5 \mathrm{~cm}$. Their shift directions (as a result of doubling either object size or velocity) are identical with the m-Tau function (Figure 1): Both maxima of the η-function shift to the left (circles) upon multiplying the object's default halfsize l by two ("size effect"). A shift in the opposite direction (triangles) occurs upon doubling approach velocity v and initial distance x_{0} ("velocity effect", $t_{c}=1.2 s$). (b) Same as Figure $1 b$, but here the size effect is demonstrated for the η-function. Unlike m-Tau, the maxima of the η-function do not lie nor shift on a straight line. Circle symbols represent the default case, with η-function maxima allocated at times $t_{\max } \in\{0.12,0.24,0.36,0.48,0.60,0.72,0.84\} s$. The velocity effect is illustrated with Figure S2.

S1.2 Remarks on Equation 1

1. In the m-Tau function $\tau_{\bmod }(t) \equiv \gamma(t) \cdot \tau(t)$, the factor $\gamma(t)$ provides gain control to $\tau(t)$:

$$
\begin{gather*}
\lim _{\dot{\Theta} \rightarrow 0} \gamma(t)=\lim _{\dot{\Theta} \rightarrow 0} \frac{\dot{\Theta}}{\dot{\Theta}+\beta_{1}}=0 \tag{S1}\\
\lim _{\dot{\Theta} \rightarrow \infty} \gamma(t)=1
\end{gather*}
$$

if $\left|\beta_{1}\right|>0$ and constant, and thus $\gamma(t)$ is constrained to the interval from zero to one, with asymptotic interval boundaries.
2. The m-Tau function can be interpreted as steady-state solution of the differential equation

$$
\begin{equation*}
\frac{d \tau_{\bmod }(t)}{d t}=-\beta_{1} \tau_{\bmod }(t)-\dot{\Theta}(t) \tau_{\bmod }(t)+\Theta(t) \tag{S2}
\end{equation*}
$$

The last equation describes a neuron which encodes $\tau_{\text {mod }}$ in its mean firing rate [1]. The decay rate (leakage conductance) is set by β_{1}, with resting level at zero. The neuron receives silent or
shunting inhibition (i.e. reversal potential equal to the neuron's resting potential) with strength $\dot{\Theta}$. Excitatory input is provided by Θ.
3. In summary, the m-Tau function comprises three desirable properties with one equation: (i) it remains finite ("computationally stable") for $\dot{\Theta}=0$, (ii) it can be formally expressed as providing a gain control for the τ-function, and (iii) it can be readily cast into a differential equation for neuronal firing rate.

Figure S2: Velocity effect. The figure illustrates how the maxima of m-Tau function and η-function behave upon changing the velocity of an approaching object. Notice that, in order to maintain $t_{c}=1.2 \mathrm{~s}$, the initial object-observer distance had to be modified accordingly (see legend). The rest of the parameters are identical with Figures 1 and S1, respectively, and are indicated at the top of each figure panel. The default values for speed and initial distance were $v=2.0 \mathrm{~m} / \mathrm{s}$ and $x_{0}=2.4 \mathrm{~m}$, respectively. Maxima corresponding to the default values are indicated by circle symbols. (a) Changes in speed translate to shifting the default data points to the left $(v=1.0 \mathrm{~m} / \mathrm{s})$ and to the right $(v=4.0 \mathrm{~m} / \mathrm{s})$. Similar to the size effect (Figure 1b), default and shifted data points lie on a straight line (except for some numerical inaccuracies associated with the two leftmost points). (b) Compared to the m-Tau function, variation in speed leads to separates curves for the maxima of the η-function. All curves are furthermore nonlinear, with their amplitudes $\eta\left(t_{\max }\right)$ increasing when maxima move closer to $t t c$.

Figure S3: Simulation results I: Modified Tau with additional inhibition. Simulation of equation (S3) for different types of object approaches, and for different values of e (left figure panels) and γ (right panels) of equation (S4). Default parameters were $\alpha_{1}=0.999$ (memory coefficient for filtering $\dot{\Theta}$), $\alpha_{2}=0.9$ (memory coefficient for low-pass filtering of x), $\gamma=10$ (constant gain factor), and $e=2.5$ (power law exponent). Noise was added to angular variables according to equation (9), with $p_{1}=p_{2}=0.020$. (\mathbf{a}, \mathbf{b}) "Normal" object approach (approaching speed $1.13 \mathrm{~m} / \mathrm{s}$, object half-size $l=0.025 \mathrm{~m}$, distance $x_{0}=1.3 \mathrm{~m}$). Inihibition stays silent $\left(g_{\text {inh }}(t)=0 \forall t\right)$ because $\ddot{\Theta}(t)$ exceeds the threshold value 5×10^{-5} most of the time. (c, d) A linear approach (i.e. $\dot{\Theta}=$ const.) triggers inhibition proportional to Θ^{e} (equation S4), and suppresses $\tau_{\text {mod }}$-responses for $e>1$ after an initial transient. This behavior is consistent with corresponding experimental observations [2]. (e,f) Perhaps an ecologically more relevant situation is the suppression of responses to translating objects, or ego-motion as consequence of translation movement (both of which $\dot{\Theta} \approx 0$). Suppression of such responses occurs again after some initial transient.

S1.3 At a glance: The η-Function and the m-Tau Function

	eta-function $\eta(t)$	m-Tau-function $\tau_{\text {mod }}(t)$
definition	$A \cdot \dot{\Theta} / \exp (\alpha \Theta)$	$\Theta /\left(\dot{\Theta}+\beta_{1}\right)$
peak location $\mathbf{t}_{\text {max }}=\ldots$	$t_{c}-\alpha \cdot \kappa$	$t_{c}-\sqrt{\kappa\left(\frac{2}{\beta_{1}}+\kappa\right)}$
place peak at $\mathrm{t}_{\max } \rightsquigarrow>$	$\alpha=\left(t_{c}-t_{\text {max }}\right) / \kappa$	$\beta_{1}=2\left[\left(t_{c}-t_{\max }\right)^{2} / \kappa-\kappa\right]^{-1}$
shift of maximum	$\alpha^{(1)}>\alpha^{(2)} \rightsquigarrow t_{\max }^{(1)}$ before $t_{\max }^{(2)}$	$\beta_{1}{ }^{(1)}>\beta_{1}{ }^{(2)} \rightsquigarrow t_{\max }^{(1)}$ after $t_{\max }^{(2)}$
inhibitory input	$\exp (\alpha \cdot \Theta)$	angular velocity $\dot{\Theta}$
firing rate equation	not straightforward (cf. [3])	$\frac{d \tau_{\bmod }(t)}{d t}=-\tau_{\bmod }\left(\beta_{1}+\dot{\Theta}\right)+\Theta$
stability issues	no	none for $\beta_{1}>0$
direct relation to t_{c}	no	$\tau_{\text {mod }}(t)=\gamma(t) \cdot \tau(t)$
lower parameter limit	$\lim _{\alpha \rightarrow 0} \eta(t)=\dot{\Theta}$	$\lim _{\beta_{1} \rightarrow 0} \tau_{\text {mod }}(t)=\tau(t)$
upper parameter limit	$\lim _{\alpha \rightarrow \infty} \eta(t)=0$	$\lim _{\beta_{1} \rightarrow \infty} \tau_{\text {mod }}(t)=0$

Additional information: $\kappa \equiv \mathrm{l} / \mathbf{v}$ is the ratio of object radius ("half-size") to object velocity; $\gamma(\mathbf{t}) \equiv \dot{\boldsymbol{\Theta}} /\left(\dot{\boldsymbol{\Theta}}+\beta_{\mathbf{1}}\right)$ is a gain control factor; and $\tau \equiv \boldsymbol{\Theta} / \dot{\boldsymbol{\Theta}}$ is the τ-function. "Place peak at $\mathbf{t}_{\text {max }}$ " means that η and $\tau_{\text {mod }}$ adopt their respective maxima at $t_{\max }$ if α and β_{1} are calculated with the formulas as shown in the table.

(a)

Figure S4: Simulation results II: Modified Tau with additional inhibition. Inhibition $g_{\mathrm{inh}}=g_{\mathrm{inh}}(x, t)$ is assumed to be a low-pass filtered version of x (equation S4). The degree of low-pass filtering is specified by the memory coefficient α_{2}. Without noise, we could in principle directly use x as inhibitory conductance (i.e. $\alpha_{2}=0$). In the presence of sufficiently high noise levels, though, x would get zero at random times. This could lead to random drop-outs of inhibition in $\tau_{\bmod }(t)$, what is indicated by the "spikes" in the figure (legend: curve for $\alpha_{2}=0$). Low-pass filtering of x with $\alpha_{2}>0$ converts $g_{\text {inh }}$ into a sluggish process, which bridges the gaps where x is zero (curve for $\alpha_{2}=0.9$).

S1.4 Shut Down of m-Tau Responses for $\dot{\Theta}=$ const.

This section is thought as a proof of two concepts: First, the m-Tau function can be easily extended to accept further excitatory or inhibitory inputs. Important, these inputs can be incorporated in a biophys-
ically plausible way [1]. Second, m-Tau as it stands ("vanilla" $\tau_{\text {mod }}$) cannot reproduce the experimental data with constant angular velocity from reference [2]. Situations with $\dot{\Theta}=$ const. may occur if selfmotion creates a translatory flow field across the retina, or if any object crosses a visual scene rather than approaching the observer on a collision course. In order to shut down m-Tau responses to such linear object "approaches", we will define a corresponding inhibitory process. We start by adding an inhibitory conductance $g_{\text {inh }}$ to the differential equation (S2):

$$
\begin{equation*}
\frac{d \tau_{\mathrm{mod}}}{d t}=-\beta_{1} \tau_{\mathrm{mod}}-\dot{\Theta} \tau_{\mathrm{mod}}+g_{\mathrm{inh}}\left[V_{\mathrm{inh}}-\tau_{\mathrm{mod}}\right]+\Theta \tag{S3}
\end{equation*}
$$

Without loss of generality, we assume $V_{\mathrm{inh}}=0$ for the inhibitory reversal potential. For the sake of clarity, we omitted biophysical constants for transforming the terms to units of voltage (the state variable $\tau_{\text {mod }}$ represents voltage). Our goal is to inhibit m-Tau responses for translation movement or ego-motion. To a first approximation, both of the latter movement patterns will have $\dot{\Theta}=$ const., and thus $\ddot{\Theta}=0$. The idea is to engage inhibition in the latter case, while it should stay silent during any "normal" object approach. To this end we define a gating process $\mathcal{G}=\mathcal{G}(\ddot{\Theta}) \in[0,1]$, with $\lim \mathcal{G}_{|\ddot{\Theta}| \rightarrow 0}=1$, and 0 otherwise. An explicit implementation of \mathcal{G} could be defined via a Heaviside or sigmoid function, respectively. For the simulations shown in figure $\mathrm{S} 3, \mathcal{G}=1$ if $|\dot{\vartheta}(t+\Delta t)-\dot{\vartheta}(t)|<5 \cdot 10^{-5}$, (low-pass filtering analogous to equation 4). Strong low-pass filtering of angular velocity (here with filter memory coefficient $\alpha_{1}=0.999$) increases the resilience of the gating process even in the presence of high noise levels.
Inhibition is furthermore assumed to be a nonlinear function of $x=x(t)$,

$$
\begin{equation*}
x=\gamma \Theta^{e} \cdot \mathcal{G}(\ddot{\Theta}) \tag{S4}
\end{equation*}
$$

with exponent $e=2.5$ (further values: Figure $\mathrm{S} 3 a, c, e$) and (here constant!) gain $\gamma=10$ (further values: Figure $\mathrm{S} 3 b, d, f)$. Finally, the inhibitory conductance $g_{\mathrm{inh}}=g_{\mathrm{inh}}(x, t)$ of equation (S3) is just a low-pass filtered version of x, where we used a memory coefficient $\alpha_{2}=0.9$. Without noise, one could relinquish filtering (i.e. $\alpha_{2}=0$), and directly use x. However, in the presence of noise, inhibition would then randomly switch-off. These drop outs would cause corresponding "spikes" for the linear approach (Figure S 4). Note that, unlike the η-function, we did not use an exponential function in equation (S4). A "moderate" power law with $e=2.5$ is sufficient to get the job done (see also reference [4]).
In figures $S 3$ and $S 4$ noise was added to optical variables, according to equation (9). This means that optical variables Θ and $\dot{\Theta}$ were replaced by $\tilde{\Theta}$ and $\dot{\tilde{\Theta}}$, respectively, in all equations within this section.

References

1. Koch C (1999) Biophysics of computation: information processing in single neurons. New York: Oxford University Press.
2. Hatsopoulos N, Gabbiani F, Laurent G (1995) Elementary computation of object approach by a wide-field visual neuron. Science 270: 1000-1003.
3. Gabbiani F, Krapp H, Koch C, Laurent G (2002) Multiplicative computation in a visual neuron sensitive to looming. Nature 420: 320-324.
4. Keil M (2011) Emergence of multiplication in a biophysical model of a wide-field visual neuron for computing object approaches: Dynamics, peaks, \& fits. Neural Information Processing Systems (NIPS) foundation. URL http://books.nips.cc. http://arxiv.org/abs/1110.0433.
