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S1 Properties and Extension of Modified Tau

S1.1 Size and Velocity Effect
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Figure S1: The η-function. (a) Same as Figure 1b, but here two η-functions with α = 13.2 and α = 9.4 are
shown. For comparison, two τmod-functions with β1 = 0.5 and β1 = 1, respectively, are also plotted, whose maxima
coincide with those of η (amplitudes of τmod functions were correspondingly rescaled). Note that both η-functions
have a more pronounced decrease after the maximum than the corresponding τmod-functions: Whereas the η-
functions approach zero before tc, the τmod-functions do not. The default maxima are marked by vertical bars,
and correspond to stimulus parameters tc = 1.2 s, x0 = 1.3m, v = 1.08m/s, and l = 2.5 cm. Their shift directions
(as a result of doubling either object size or velocity) are identical with the m-Tau function (Figure 1): Both
maxima of the η-function shift to the left (circles) upon multiplying the object’s default halfsize l by two (“size
effect”). A shift in the opposite direction (triangles) occurs upon doubling approach velocity v and initial distance
x0 (“velocity effect”, tc = 1.2s). (b) Same as Figure 1b, but here the size effect is demonstrated for the η-function.
Unlike m-Tau, the maxima of the η-function do not lie nor shift on a straight line. Circle symbols represent the
default case, with η-function maxima allocated at times tmax ∈ {0.12, 0.24, 0.36, 0.48, 0.60, 0.72, 0.84} s. The
velocity effect is illustrated with Figure S2.

S1.2 Remarks on Equation 1

1. In the m-Tau function τmod(t) ≡ γ(t) · τ(t), the factor γ(t) provides gain control to τ(t):

lim
Θ̇→0

γ(t) = lim
Θ̇→0

Θ̇

Θ̇ + β1

= 0 (S1)

lim
Θ̇→∞

γ(t) = 1

if |β1| > 0 and constant, and thus γ(t) is constrained to the interval from zero to one, with
asymptotic interval boundaries.

2. The m-Tau function can be interpreted as steady-state solution of the differential equation

dτmod(t)

dt
= −β1τmod(t)− Θ̇(t)τmod(t) + Θ(t) (S2)

The last equation describes a neuron which encodes τmod in its mean firing rate [1]. The decay
rate (leakage conductance) is set by β1, with resting level at zero. The neuron receives silent or
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shunting inhibition (i.e. reversal potential equal to the neuron’s resting potential) with strength Θ̇.
Excitatory input is provided by Θ.

3. In summary, the m-Tau function comprises three desirable properties with one equation: (i) it
remains finite (“computationally stable”) for Θ̇ = 0, (ii) it can be formally expressed as providing
a gain control for the τ -function, and (iii) it can be readily cast into a differential equation for
neuronal firing rate.
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Figure S2: Velocity effect. The figure illustrates how the maxima of m-Tau function and η-function behave
upon changing the velocity of an approaching object. Notice that, in order to maintain tc = 1.2 s, the initial
object-observer distance had to be modified accordingly (see legend). The rest of the parameters are identical
with Figures 1 and S1, respectively, and are indicated at the top of each figure panel. The default values for
speed and initial distance were v = 2.0m/s and x0 = 2.4m, respectively. Maxima corresponding to the default
values are indicated by circle symbols. (a) Changes in speed translate to shifting the default data points to the
left (v = 1.0m/s) and to the right (v = 4.0m/s). Similar to the size effect (Figure 1b), default and shifted data
points lie on a straight line (except for some numerical inaccuracies associated with the two leftmost points). (b)
Compared to the m-Tau function, variation in speed leads to separates curves for the maxima of the η-function.
All curves are furthermore nonlinear, with their amplitudes η(tmax) increasing when maxima move closer to ttc.
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(d) linear (various γ)
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Figure S3: Simulation results I: Modified Tau with additional inhibition. Simulation of equation (S3)
for different types of object approaches, and for different values of e (left figure panels) and γ (right panels)
of equation (S4). Default parameters were α1 = 0.999 (memory coefficient for filtering Θ̇), α2 = 0.9 (memory
coefficient for low-pass filtering of x), γ = 10 (constant gain factor), and e = 2.5 (power law exponent). Noise
was added to angular variables according to equation (9), with p1 = p2 = 0.020. (a, b) “Normal” object
approach (approaching speed 1.13m/s, object half-size l = 0.025m, distance x0 = 1.3m). Inihibition stays silent
(ginh(t) = 0∀t) because Θ̈(t) exceeds the threshold value 5×10−5 most of the time. (c, d) A linear approach (i.e.
Θ̇ = const.) triggers inhibition proportional to Θe (equation S4), and suppresses τmod-responses for e > 1 after an
initial transient. This behavior is consistent with corresponding experimental observations [2]. (e, f) Perhaps
an ecologically more relevant situation is the suppression of responses to translating objects, or ego-motion as
consequence of translation movement (both of which Θ̇ ≈ 0). Suppression of such responses occurs again after
some initial transient.
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S1.3 At a glance: The η-Function and the m-Tau Function

eta-function η(t) m-Tau-function τmod(t)

definition A · Θ̇/ exp(αΘ) Θ/(Θ̇ + β1)

peak location tmax = ... tc − α · κ tc −
√
κ( 2

β1
+ κ)

place peak at tmax  α = (tc − tmax)/κ β1 = 2
[
(tc − tmax)

2/κ− κ
]−1

shift of maximum α(1) > α(2)  t
(1)
max before t

(2)
max β1

(1) > β1
(2)  t

(1)
max after t

(2)
max

inhibitory input exp(α ·Θ) angular velocity Θ̇

firing rate equation not straightforward (cf. [3]) dτmod(t)
dt = −τmod(β1 + Θ̇) + Θ

stability issues no none for β1 > 0

direct relation to tc no τmod(t) = γ(t) · τ(t)

lower parameter limit limα→0 η(t) = Θ̇ limβ1→0 τmod(t) = τ(t)

upper parameter limit limα→∞ η(t) = 0 limβ1→∞ τmod(t) = 0

Additional information: κ ≡ l/v is the ratio of object radius (“half-size”) to object velocity;
γ(t) ≡ Θ̇/(Θ̇+ β1) is a gain control factor; and τ ≡ Θ/Θ̇ is the τ -function. “Place peak at tmax”
means that η and τmod adopt their respective maxima at tmax if α and β1 are calculated with the
formulas as shown in the table.
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Figure S4: Simulation results II: Modified Tau with additional inhibition. Inhibition ginh = ginh(x, t)
is assumed to be a low-pass filtered version of x (equation S4). The degree of low-pass filtering is specified by
the memory coefficient α2. Without noise, we could in principle directly use x as inhibitory conductance (i.e.
α2 = 0). In the presence of sufficiently high noise levels, though, x would get zero at random times. This could
lead to random drop-outs of inhibition in τmod(t), what is indicated by the “spikes” in the figure (legend: curve
for α2 = 0). Low-pass filtering of x with α2 > 0 converts ginh into a sluggish process, which bridges the gaps
where x is zero (curve for α2 = 0.9).

S1.4 Shut Down of m-Tau Responses for Θ̇ = const .

This section is thought as a proof of two concepts: First, the m-Tau function can be easily extended to
accept further excitatory or inhibitory inputs. Important, these inputs can be incorporated in a biophys-



s5

ically plausible way [1]. Second, m-Tau as it stands (“vanilla” τmod) cannot reproduce the experimental
data with constant angular velocity from reference [2]. Situations with Θ̇ = const . may occur if self-
motion creates a translatory flow field across the retina, or if any object crosses a visual scene rather than
approaching the observer on a collision course. In order to shut down m-Tau responses to such linear
object “approaches”, we will define a corresponding inhibitory process. We start by adding an inhibitory
conductance ginh to the differential equation (S2):

dτmod

dt
= −β1τmod − Θ̇τmod + ginh[Vinh − τmod] + Θ (S3)

Without loss of generality, we assume Vinh = 0 for the inhibitory reversal potential. For the sake of clarity,
we omitted biophysical constants for transforming the terms to units of voltage (the state variable τmod

represents voltage). Our goal is to inhibit m-Tau responses for translation movement or ego-motion. To
a first approximation, both of the latter movement patterns will have Θ̇ = const ., and thus Θ̈ = 0. The
idea is to engage inhibition in the latter case, while it should stay silent during any “normal” object
approach. To this end we define a gating process G = G(Θ̈) ∈ [0, 1], with limG|Θ̈|→0 = 1, and 0 otherwise.
An explicit implementation of G could be defined via a Heaviside or sigmoid function, respectively. For
the simulations shown in figure S3, G = 1 if |ϑ̇(t+∆t)− ϑ̇(t)| < 5 · 10−5, (low-pass filtering analogous to
equation 4). Strong low-pass filtering of angular velocity (here with filter memory coefficient α1 = 0.999)
increases the resilience of the gating process even in the presence of high noise levels.
Inhibition is furthermore assumed to be a nonlinear function of x = x(t),

x = γΘe · G(Θ̈) (S4)

with exponent e = 2.5 (further values: Figure S3a,c,e) and (here constant!) gain γ = 10 (further
values: Figure S3b,d,f ). Finally, the inhibitory conductance ginh = ginh(x, t) of equation (S3) is just a
low-pass filtered version of x, where we used a memory coefficient α2 = 0.9. Without noise, one could
relinquish filtering (i.e. α2 = 0), and directly use x. However, in the presence of noise, inhibition would
then randomly switch-off. These drop outs would cause corresponding “spikes” for the linear approach
(Figure S4). Note that, unlike the η-function, we did not use an exponential function in equation (S4).
A “moderate” power law with e = 2.5 is sufficient to get the job done (see also reference [4]).
In figures S3 and S4 noise was added to optical variables, according to equation (9). This means that

optical variables Θ and Θ̇ were replaced by Θ̃ and ˙̃Θ, respectively, in all equations within this section.
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