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Figure S5: Masking of nonlinearity by noise I. Each panel shows an example of fitting a straight line (with
weighted least square regression) to 15 averaged random trials of equation (S10). In this figure β1 = 1.73464, and
noise levels were set to match those in Figure 3a (shaded area). The purpose of this simulation is illustrate how
noise can hide the nonlinearity of the m-Tau function. The statistical parameters associated with the weighted
linear regression fit are indicated in the headline of each panel.

S2 Nonlinearity of the m-Tau Function

In this section we address whether τmod can reproduce some of the reported properties of extracellular
recordings from locusts’ DCMD. This section will focus on the experimental data from Gabbiani et
al. [1]. We manually resampled their data points (plus standard deviations) from their Figure 4a on
page 1128 with an ad hoc programmed graphical interface (resampled data are shown in Figure 3a & 4,
respectively, and a screenshot of the graphical interface is shown in Figure S16a). Their data suggest a
linear relationship between relative time of peak firing rate and the half-size to velocity ratio κ ≡ l/v:

t
(η)
peak = ακ+ δ (S5)

where relative peak time will be denoted by tpeak ≡ tc − tmax. Notice that (i) tmax is the absolute time
of the maximum, (ii) tpeak is always positive or zero. Gabbiani et al. [1] found slope α = 4.7 ± 0.3 and
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Figure S6: Masking of nonlinearity by noise II. Same as the last figure, but here β1 = 1.52651, and the noise
level in equation (S10) was set to ξ(κ) = 0.87κ. The latter equation was proposed by Gabbiani et al. (equation
8, page 1129 in reference [1]). Figure panel d is identical with Figure 3b.

intercept δ = −27± 3ms (±1 SD, N = 15 neurons). We used weighted linear regression for fitting their
data and obtained α = 4.61± 0.179 and δ = −30± 1ms, respectively (figure 3a).
Figure 4 illustrates how the relative peak time tpeak of the τmod-maxima depends on κ:

tpeak =

√
κ

(
2

β1
+ κ

)
(S6)

In Figure 4, the values of β1 were chosen according to

β1 = 2
[
t2peak/κ− κ

]−1
(S7)

with values for (κ, tpeak) taken at selected data points marked by red square symbols. Within the
displayed domain of κ and range tpeak, the curve tpeak(κ) appears almost linear for β1 = 111.70, but is
visibly bended for β1 = 1.85. The slope of tpeak(κ) can be obtained by linearization of equation (S6)
around some constant κ0 (Taylor series up to the first order):

tpeak(κ) ≈ tpeak(κ0) + (κ− κ0) ·
∂tpeak
∂κ

∣∣∣
κ=κ0

(S8)

The last equation represents a straight line (tangent at κ0) with slope

∂tpeak
∂κ

=
κ+ 1/β1√
κ
(

2
β1

+ κ
) (S9)

which needs to be evaluated at κ ≡ κ0. The slope approaches 1 for large β1, because the terms with
1/β1 ≈ 0. Because then the slope does not dependent on κ anymore, tpeak equals a straight line in the
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Figure S7: Statistics of Line Fit I. The coefficient of determination (R2) is the proportion of variance of the
data which can be explained by the (here linear) model. The continuous line is the mean of the n = 15 data points
at each of 81 values of β1. The shaded area indicates one standard deviation. The broken line is the median value
(0.92) across all data points.

(a) Mean Square Error (b) Kolmogorov-Smirnov Test

Figure S8: Statistics of Line Fit II. See the legend of Figure 5 for computation details. Continuous lines
indicate the mean of the n = 15 data points at each value of β1. Shaded areas indicate one standard deviation, and
the broken line is the median across all data points. (a) Mean square error (MSE) of linear regression improves
with increasing β1. This is what would be expected from Figure 4, because linearity is better approximated with
higher values of β1. The median value across all 81× 15 data points is 2.83 · 10−4. (b) Kolmogorov-Smirnov test
on residuals gives the probability that the residuals were drawn from a standard Gaussian probability distribution
(median across all 1215 values: 0.71). Note that we assumed additive Gaussian noise which linearly increased
with the halfsize to velocity ratio κ.

limit β1 → ∞.
If lines are fitted “brute-force” to the nonlinear curves tpeak(κ) for finite values of β1, then both their
slopes α and their intercepts δ will increase with decreasing values of β1 (see corresponding values in
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(a) F Statistics (b) p(full model)

Figure S9: Statistics of Line Fit III. Details are described in the legend of Figure 5. Continuous lines = mean
of data points (n = 15) at each β1 (81 values). Shaded areas = one standard deviation. Broken line = median
across all data points. (a) Ratio of the model mean square to error mean square (“F-statistics”, median=108).
(b) Probability of obtaining observed F-values if a reduced model is used instead of the full linear model (median
p value 2.37 · 10−5). Note the logarithmic scaling of the ordinate.

Figure 4 written in small font size under the values of β1). This hints at a positive correlation between
α and δ, that was also reported by Gabbiani et al. [1].
The nonlinear dependence of tpeak on κ is nevertheless not in agreement with Gabbiani et al.’s findings [1],
because they reported a linear relationship (equation S5). We observed, however, that sufficiently high
noise levels can contribute to hiding the nonlinearity. Our point is illustrated with figures S5 and S6,
where each figure panel represents a simulation in which Gaussian noise ξ with zero mean and with
standard deviation σ̃ has been added to equation (S6). Accordingly, the simulation protocol is defined
by (i) substitution of equation (S6) by

tpeak =

√
κ

(
2

β1
+ κ

)
+ σ̃ξ (S10)

(ii) averaging 15 results of the “noisified” version of tpeak, and (iii) fitting a line to the averaged (κ, tpeak)
data. For the simulation we need to specify β1 and the noise level σ̃ = σ̃(κ) in the last equation. For the
noise level, two settings were considered.
First, β1 = 1.73464± 0.001516 (median ±σrob) for the simulations shown in Figure S5, and we measured
the standard deviation σ̃ at each κ directly from Figure 3a (shaded area). Second, β1 = 1.52651±0.002068
in Figure S6, and noise levels were assumed to be linearly increasing with κ, according to σ̃ = 0.87κ (equa-
tion 8 on page 1129 in reference [1]).
The specific values of β1 for the two noise levels were determined numerically with a “stochastic optimiza-
tion algorithm”, which works as follows. First, a candidate value of β1 is chosen, and N = 15 noisified
instances of equation (S10) were averaged. In this way we obtained a mean tpeak as a function of κ, and
associated standard deviations. The inverse of the squared standard deviations were used as weights for
a weighted linear regression fit. From the fit a slope value was obtained, which was accepted if R2 > 0.9,
F > 50, and KS-test p > 0.5 were simultaneously fulfilled (acceptance with p = 0.25 for the first setting,
and p = 0.67, respectively, for the second setting). Otherwise the slope value was ignored. All accepted
slope values were subsequently averaged (typically 5000), and compared with the target slope α = 4.7
from Gabbiani et al. [1]. The value of β1 was increased or decreased as a result of the comparison, and the
algorithm continued to modify β1 until a convergence criterion was met. The algorithm was run several
times, and the median of the resulting values of β1 was taken.
In all simulations shown in Figures S5 and S6, the (simulated) data points are consistent with linearity.
The statistical parameters of each weighted regression result (as indicated at the top of each figure panel)
are consistent with a linear model, too. Thus, our nonlinear model for tpeak (equation S6) can appear as
being linear in the presence of suitable noise levels.
Gabbiani et al. noted a positive correlation between α and δ (correlation coefficient 0.76, cf. Figure 4b,
page 1128 in reference [1]). Figure 4 suggests such a correlation for lines fitted to equation (S6). We
studied this issue in more detail by the procedure described in the legend of Figure 5. For each of 81
values of β1 ∈ [0.9, 1.8], n = 15 data points were generated. Each data point in turn represents inter-
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cept δ and slope α of a line fit to N = 15 averaged random trials of the “noisified” equation (S6) (i.e.,
equation S10). Figure 5 shows a correlation between intercept and slope. The addition of noise decreases
correlation somewhat, because the long main axis of the ellipse in Figure 5 has a smaller slope than the
straight line that characterizes the noise-free situation.
The statistical parameters (Figures S7 to S9) for the 15 × 81 linear regressions provide further support
to that the nonlinearity is successfully hidden by the noise. Specifically, the mean square error (MSE,
Figure S8a) decreases with increasing β1. This behavior is in line with equations (S8) and (S9), respec-
tively, where we noted that tpeak(κ) eventually approaches a straight line for increasing values of β1.
If we ignored the standard deviations associated with the data points tpeak(κ), we could use ordinary
linear regression or a robust regression method to fit the data. In that case, we would obtain somewhat
higher slope values for all fits. For example, ordinary linear regression of the data from Gabbiani et al. [1]
would yield α = 5.19 and δ = −40ms. With β1 = 0.819273, the corresponding linear regression fits of
equation (S10) would again result in consistent predictions for the two considered noise settings. Thus,
our argument that the m-Tau nonlinearity could be hidden by noise does not depend critically on the
choice of the fitting method.
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