
s33

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z in degrees

|z
−

f(
z)

|

error in approximations     sin(z) ≈ z     atan(z) ≈ z

 

 

f(z)= sin(z)
f(z)=atan(z)

(a) absolute differences

0 200 400 600 800 1000 1200 1400
−0.01

0

0.01

0.02

0.03

0.04

0.05

t [ms]

approaching speed v=1.00m/s,  initial distance=1.300m

 

 

l2/xv (l=5cm)
τ−x/v (l=5cm)

l2/xv (l=2.5cm)
τ−x/v (l=2.5cm)
t
c
=1300ms

(b)

Figure S44: Approximating τ . (a) Using the approximations sinz ≈ z and arctan z ≈ z, respectively, involves
an error |f(z)− z| (with f(z) = sin z or arctan z, see legend) which grows with visual angle. (b) For two object
diameters (2l = 5cm and 2l = 10cm), the functions τ − (tc − t) and l2/v2(tc − t) are shown. The former one
represents the deviation of τ from the quantity which it is supposed to estimate: tc − t. The latter function
represents the last term in equation (S21), which is neglected in the course of the approximation procedure.
Bigger object diameters deteriorate the estimation τ ≈ tc − t, especially in the late phase of the approach.

S6 Time to Contact Approximation of “Tau” and Θ̈

The τ function estimates a running value of time to contact (tc) until shortly before collision. Where
τ ≈ tc − t holds, τ is a monotonically decreasing function, if visual angle Θ and angular velocity Θ̇
correspond to an object approach with constant velocity. Afterwards, when τ ≈ tc − t breaks down, τ
adopts a minimum, which is accompanied by an increasing growth of the estimation error.
In the following section, we show how τ approximates ttc (“Part I”), and in the subsequent section we
derive an equation for the time when τ adopts its minimum (“Part II”). We furthermore propose a “rule
of thumb” for the validity period of ttc approximation, based on the maximum of angular acceleration
Θ̈.

S6.1 “Tau” Estimates Time to Contact (Part I)

Consider at first the series expansion for arctan z (e.g. 4.4.42, page 81 in [1]),

arctan z = z
∞∑
k=0

(−z2)k

2k + 1
= z − z3

3
+

z5

5
− z7

7
+ ... (S20)

By the last equation, we can write arctan z ≈ z for |z| < 1 (figure S44a). By equation (10), we identify z
with l/x(t), where x(t) ≡ v · (tc − t). Thus, |z| < 1 implies small visual angles Θ, again by equation (10).
Since x(t) is monotonically decreasing until short before tc, small visual angles are obtained “sufficiently
far” from tc. We will refer to the latter condition with “initial phase of the approach”.
Now we plug equation (11) and the approximation Θ(t) ≈ 2l/x(t) into τ :

τ ≡ Θ

Θ̇
≈ tc − t+

l2

v2(tc − t)
(S21)
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Because tc − t � l2/v2(tc − t) in the initial approach phase2 (figure S44b), we finally obtain τ ≈ tc − t.
�
An alternative derivation of this result was suggested by Sun & Frost [2]. Because we use a slightly
different notation, we sketch their derivation here for the sake of completeness. The idea is to take the
time derivative of the left hand side and the right hand side of equation (10),

tan
Θ

2
=

l

x

d
dt−→ Θ̇

2 cos2 Θ
2

=
lv

x2
(S22)

By dividing the left hand side by its temporal derivative we get (using sin z ≈ z for |z| � 1, c.f. figure
S44a)

2 sin Θ
2 cos Θ

2

Θ̇
=

sinΘ

Θ̇
≈ Θ

Θ̇
≡ τ (S23)

By dividing the right hand side of equation (S22) by its temporal derivative, we obtain x/v = tc − t.
Finally, by putting things together we arrive again at τ ≈ tc − t.
�
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Figure S45: τ has a minimum. (a) The nonlinear behavior of τ(t) gets prominent in the late phase of the
object approach (red line). As a consequence, the deviation from tc − t increases nonlinearly (broken line). The
gray lines show visual angle Θ(t), angular velocity Θ̇(t), and angular acceleration Θ̈(t). The latter function has
a maximum. Notice furthermore that Θ̇(t) approaches a plateau shortly before tc. The green “x” indicates the
numerically determined τ -minimum. The minimum according to equation (S24) is marked by a black crosshair.
Finally, the maximum of Θ̈(t) is marked by a blue circle symbol, according to equation (S26). (b) The time tmin

of the minimum of τ was computed numerically via tmin : τ̇(t) ≡ 0. To this end, 9999 values of v, tc, and l were
randomly chosen, and c0 (equation S24) was determined. The line-distribution suggests that c0 is constant and
independent from l/v. The robust estimation of standard deviation was in the order of 10−15, which most likely
corresponds to numerical noise.

S6.2 Beyond ttc approximation: Minimum of “Tau” (Part II)

Given the approximation τ ≈ tc− t, we may ask two questions: (i) Until which time do we have a “good”
approximation (i.e., with acceptable small approximation error)? (ii) Why does the approximation get
unacceptable when we get close to ttc?
The answer to (ii) is that τ reveals a minimum tmin shortly before ttc (figure S45a). By means of
numerical studies we found that this minimum is located at (figure S45b)

tmin = tc − c0 ·
l

v
(S24)

c0 = 0.428977908964± 3.37433 · 10−15

(median± σrob, n = 9999)

2The relation tc − t > l2/v2(tc − t) holds until t = tc − l/v, which is nearly at impact: Notice that l/v is just the time
to pass a distance that is equal to the object’s halfsize or radius.
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Figure S46: Experimental t̂max versus predicted tmax. This figure is analogous to Figure 2: The symbols
denote the t̂max of the neuronal data (Supplementary Figure S16b). Here, the ends of the thick, light gray bars
indicate the tmax prediction from angular acceleration Θ̈ (equation S26). The longer the bars, the higher the
prediction error. The red “+” symbols indicate the tmax predictions from the inverse tau function τ−1. Inverse
tau has its maxima exactly where τ has a minimum, so corresponding predictions were computed by equation
(S24). For both functions, the respective sum of absolute differences ∆t(κi) ≡ |t̂max(κi)− tmax(κi)| (with κ ≡ l/v)
is indicated in the inset. The mean (±1 s.d., n = 31) of absolute differences is 89.3ms ± 80.80ms (median
±σrob: 79.7ms ± 72.48ms) for τ−1, and 85.9ms ± 79.63ms (median ±σrob: 75.3ms ± 69.18ms) for Θ̈. These
values correspond to the average time shift α that would be necessary to move the maxima of τ−1 and Θ̈ to the
respective t̂max of the experimental response curves. The two continuous lines connect the data for a series of l/v
values from the same paper (gray: reference [3]; green: reference [4]). Symbols identify papers via Supplementary
Figure S16b.

Notice that the minimum of τ is equivalent to a maximum of 1/τ , and that it is linearly related to the
half-size to velocity ratio l/v. The maximum of the η-function is located at tc − α · l/2v. Therefore, the
minimum of τ(t) coincides with the maximum of η(t) for α = 2c0 ≈ 0.8580, at a constant visual angle of
2 arctan(1/2c0) ≈ 98.74◦.
Yet another function exists which has its maximum linearly related to l/v, namely angular acceleration

Θ̈ ≡ d2Θ

dt2
=

4lv2x(t)

[x2(t) + l2]
2 (S25)

which adopts its maximum at

tmax = tc −
l√
3v

(S26)

because c0 <
√

1/3 ≈ 0.5774, angular acceleration will adopt its maximum before τ reaches its minimum
(figure S45a). The visual angle associated with the maximum of angular acceleration is approximately
81.79◦, corresponding to α = 2/

√
3 ≈ 1.1547.

These values for α underestimate typical experimental values (3 / α / 8, e.g. [3]). However, neither τ
nor angular acceleration have an additional free parameter to “shift” the location of their minimum and
maximum, respectively. The only possible way for shifting their extrema to earlier times would be by
introducing a time shift δ, for example τ(t+ δ) and Θ̈(t+ δ), with some δ > 0. But Figure S46 suggests
that δ would be an increasing function of κ = l/v rather than being a constant (δ is indicated by the gray
bars and red “+” symbols, respectively). Moreover, the average values for δ would overestimate typical
experimental values (/ 35ms, e.g. [3]).
This takes us straight to answering question (i). A binary criterion for an acceptable error in the
estimation τ ≈ tc − t could be based on the maximum of angular acceleration, or any other constant
c1 >

√
1/3. In this way one can deem the estimation as “good” as long as t ≤ tc−c1 · l/v. As c1 is related
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to angular size, an error threshold could be based on one of the approximations S20 (arctanx ≈ x) or
S23 (sinx ≈ x), respectively.
A time te could be defined by fixing an error e ≡ |τ(te) − tc + te| (figure S44). Then, ξe ≡ v(tc − te)/l.
This ξe would be useful in determining te for arbitrary half-size to velocity ratios, that is te = tc − ξel/v.
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