
s41

S8 First Order Temporal Low-Pass Filter (Equation 4)

This section derives equation (4) from the differential equation of a leaky integrator. Let x be the state
variable of the leaky integrator which, for example, may represent the firing rate of a neuron:

τm
dx(t)

dt
= −x(t) + z(t) (S27)

The last equation integrates the input z(t) with time constant τm (which may represent the membrane
time constant of a neuron). If τm is sufficiently small, then past inputs are quickly discarded, and the
filter response x(t) (“output variable”) eventually follows the input z(t). In other words, few low-pass
filtering of z(t) occurs, and the filter is said to have a short memory.
If τm is very big, then the opposite will occur: The filter gets very sluggish, and eventually sums up all
inputs z(t). This means that the filter output x(t) is a strongly low-pass filtered version of the input z(t),
and the filter is said to have a long memory.
The just described behavior is readily seen when we consider a discretized version of the last equation.
For discretization, we assume that time t increases in steps of ∆t (“sampling interval” or “integration
time step”). We have two possibilities for implementing discretizaton: Forward differencing and backward
differencing. Both differencing schemes will be considered in turn.

S8.1 Forward Differencing (“Forward Euler”)

Here, the right hand side depends on t (i.e., only on past terms):

τm
x(t+∆t)− x(t)

∆t
= −x(t) + z(t) (S28)

By Rearranging terms we obtain:

x(t+∆t) =

[
1− ∆t

τm

]
x(t) +

∆t

τm
z(t) (S29)

Now let ξ ≡ ∆t/τm, and 0 ≤ ξ ≤ 1. Then, we readily obtain equation (4) by defining the memory
constants as ζi ≡ 1 − ξ with i = 1, 2. A big time constant τm � ∆t implies ζi → 1. This would endow
the filter with an infinite memory – it will never change its initial value, because the input z(t) will be
multiplied by zero.
The other limit case is defined by τm = ∆t (“small τm”), and thus ζi = 0. Then, x(t + ∆t) = z(t),
meaning that the filter has no memory on past inputs. In other words, no lowpass filtering takes place –
the filter output x follows the input signal z.

S8.2 Backward Differencing (“Backward Euler”)

Here, the right hand side depends on t+∆t (i.e., on future terms):

τm
x(t+∆t)− x(t)

∆t
= −x(t+∆t) + z(t+∆t) (S30)

A more compact notation can be obtained by susbtituting t̃ ≡ t+∆t in the last equation (and omit the
tilde in what follows):

τm
x(t)− x(t−∆t)

∆t
= −x(t) + z(t) (S31)

By Rearranging terms we obtain:

x(t) =
τm

τm +∆t
x(t−∆t) +

∆t

τm +∆t
z(t) (S32)



s42

For backward differencing, the filter memory constants ζi (i = 1, 2) from equation (4) are defined by
ζi ≡ τm/(τm + ∆t). Notice that 1 − ζi = ∆t/(τm + ∆t), which is the factor associated with the input
z. For big time constants τm � ∆t we get ζi → 1, meaning that our filter would approach an infinite
memory (strong lowpass filtering).
For small values τm = 0, we obtain ζi = 0 and thus x(t) = z(t) – the filter has no memory on past inputs,
and consequently no lowpass filtering will take place.


