S2. Matrices of high specificity

Master matrices of high specificity of any of the three kinds are of particular forms: the higher the specificity, the closer the matrix is to one of the limit matrices in Figure 1 below. These matrices are obtained by solving the equations $\mathbf{M}^{\text{HP}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{M}^{\text{SP}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, and $\mathbf{M}^{\text{HS}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, under the constraint that the symbionts are in principle beneficial, i.e. $m_{xy,z} \ge m_{x-,z}$ for all x = a, A, y = s, S and z = b, B. Below we briefly discuss the consequences of high specificities.

High HP-specificity reduces the differences between symbiont-bearing and symbiont-free hosts when the host and parasite background is fixed: $|m_{xy,z} - m_{x-,z}|$ becomes close to zero. Thus it can be expected that the persistence of symbionts becomes more sensitive to the costs of infection. High host-parasite specificity also reduces the differences between the effects of different symbiont alleles.

High SP-specificity reduces the effect of the host allele on the outcome of the interaction: $|m_{ay,z} - m_{Ay,z}|$ becomes close to zero. Another consequence of high SP-specificity is that the symbiont-free hosts are not able to resist infection.

High HS-specificity makes the outcome of the parasite attack insensitive to the parasite genotype: $|m_{xy,b} - m_{xy,B}|$ is close to zero. Symbiont-free hosts are very susceptible to infection, but two of the four host-symbiont associations are largely immune.

	ь	В	ь	В		ь	в
a-	/1	0)	a- / 0	0)	a-	0	0
а- А-	0	1	А- 0	0	A-	0	0
	1	0	as 1	0	as	1	1
As		1	As 1	0	As	0	0
	1	0	as 0	1	aS	0	0
AS	$\left(0 \right)$	1 /	as $igvee 0$	1/	AS	$\backslash 1$	1/

Figure 1: Master matrices with maximal host-parasite (l), symbiontparasite (m), and host-symbiont (r) specificities. Each matrix has a symmetric version with the same property.