
1 Parameter estimation

1.1 Formal problem statement

Let the vector v(t, q) = (v0(t, q), ..., vK−1(t, q))T describe the state of the
system at time t. The dimension of v equals the number of state variables
K. Let the vector q = (q0, ..., qI−1)T be the vector of parameters of dimension
I.

The system of ordinary differential equations of the first order with re-
spect to the independent variable t and initial conditions describe the dy-
namics of the system:

∂v

∂t
= f(v, q); v(0, q) = v0; (1.1)

The model parameters are estimated by fitting the model output to ex-
perimental data. This is performed by minimization of the quality functional
that is defined as the sum of squared differences between the data and model
output:

F (v, q) =
J∑
i=1

(v(ti, q)− y(ti))
T (v(ti, q)− y(ti)) + P (q) (1.2)

= ϕ(v1, ..., vJ) + P (q)→ min

vi = v(ti, q),

where J independent experimental observations are denoted as y(ti) =
(y0(t), ..., yK−1(t))T and i = 1, ..., J .

Inequality constraints are imposed on the subset of parameters:

qlowi ≤ qi ≤ qupi i ∈ Il. (1.3)

System (1.1) is sometimes referred to as differential constraint. Problems of
mathematical physics described by differential equations of higher orders can
be rewritten in normal form, like (1.1)[1].

1.2 Calculation of trial vectors

The first trial vector is calculated by

v = qr1 + S(qr2 − qr3) (1.4)
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where q• is a member of the current generation g, S is a predefined scaling
constant and r1, r2, r3 are different random indices of the members of pop-
ulation. The second trial vector is calculated using ”trigonometric mutation
rule” [2]

z =
qr1 + qr2 + qr3

3
+ (ϕ2 − ϕ1)(qr1 − qr2) (1.5)

+ (ϕ3 − ϕ2)(qr2 − qr3) + (ϕ1 − ϕ3)(qr3 − qr1)

where ϕi = |F (qri)|/ϕ∗, i = 1, 2, 3, ϕ∗ = |F (qr1)| + |F (qr2)| + |F (qr3)|. The
third trial vector is defined as

wj =

{
vj, j = 〈n〉I , 〈n+ 1〉I , ..., 〈n+ L− 1〉I
zj j < 〈n〉I OR j > 〈n+ L− 1〉I

(1.6)

where n is a randomly chosen index, 〈x〉y is the remainder of division x by
y, and L is determined by Pr(L = a) = (p)a, where p is the probability of
crossover. The new individuum replaces it’s parent if the value of the quality
functional for it’s set of parameters is less than that for the current one.
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Figure 1: Construction of the trial vector

The process is illustrated in Fig. 1.
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1.3 Preserving population diversity

The original algorithm was highly dependent on internal parameters as re-
ported by other authors, see, for example [3]. An efficient adaptive scheme
for selection of internal parameters S and p based on the control of the pop-
ulation diversity was proposed in [4]:

varj =
1

NP

NP−1∑
i=0

(
qi,j − 1

NP

NP−1∑

k=0

qk,j

)2

(1.7)

where j = 0, ..., I − 1. Then

Sj =

{√
NP ·(cj−1)+pj(2−pj)

2·NP ·pj NP · (cj − 1) + pj(2− pj) ≥ 0

Sinf NP · (cj − 1) + pj(2− pj) < 0
(1.8)

and

pj =

{
−(NP · S2

j − 1) +
√

(NP · S2
j − 1)2 −NP · (1− cj) cj ≥ 1

pinf cj < 1
(1.9)

and a new control parameter γ was introduced

cnewj = γ
(
varj/var

new
j

)
(1.10)

1.4 Differential Evolution Entirely Parallel method

Being an evolutionary algorithm, DE can be easily parallelized due to the
fact that each member of the population is evaluated individually. Two
approaches have been developed:

• Each individuum is assigned to one node;

• The whole population is divided into subpopulations that are some-
times called islands or branches, one per each computational node.

The second approach eliminates the restriction on the number of individ-
uals (see 3). Individual members of branches are then allowed to migrate,
i.e. move, from one branch to another according to predefined topology [5].
The number of iterations between migrations is called communication period
Π.
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Figure 2: Differential Evolution processes the population of individuals

The Differential Evolution Entirely Parallel (DEEP) method, developed
by authors [6] takes into account the age of individuals during the evolution.
The age is defined as the number of method iterations that this individual
survived without changes. The fact that the certain parameter set has not
been updated during several iterations indicates that this set corresponds to
the local minimum of the quality functional. As we seek the global minimum
such parameter set can be deleted from the population. The set of parameters
that corresponds to the minimal functional value found by the moment in
parallel branch is copied to replace the deleted parameter set in target branch.

The computational nodes are organized in a ring(see Fig. 4) and individ-
uals migrate from node k to node k+ 1, if it exists, and from the last one to
the first one. The migration scheme provides a high speed of the algorithm
convergence.

1.5 Trigonometric transformation of constraints

Let us introduce new parameters ui

qi = αi + βi sin (ηui), (1.11)
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Figure 3: The whole population is subdivided into branches

where scaling coefficient η is chosen experimentally, and

αi = (qupi + qlowi )/2; βi = (qupi − qlowi )/2.

Another transformation can be also used

qi = αi + βi tanh (ηui), (1.12)

Consequently, parameters qi, i ∈ Il in (1.1) are substituted with their
transformations (1.11) or (1.12), and DEEP is applied to determine uncon-
strained parameters ui.

1.6 Stopping criterion

Calculations are stopped in case that the functional F decreases less than a
predefined value ρ during M steps, Fig. 5.

1.7 Implementation

The serial algorithm was implemented in ANSI C programming language and
run on Dell PowerEdge 2800 with 2 Xeons 2.4 GHz. The parallel algorithm
was implemented in ANSI C programming language and MPI was used for
parallelization. Runs were performed with different combinations of parame-
ters on the cluster (160 IBM PowerPC-2200 processors) in the Ioffe Physical
Technical Institute of the Russian Academy of Sciences, St.Petersburg, on the
cluster (1980 Intel Xeons) in the Joint Supercomputer Center of the Russian
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Figure 4: Migration scheme. Network topology

Academy of Sciences, Moscow, and on the cluster (128 AMD Opterons 280) in
the Laboratory of Applied Mathematics and Mechanics of the St.Petersburg
State Polytechnical University.

1.8 Parameters of algorithm

The following parameters were used:

• Population size:268;

• Control parameters γ:0.95;

• Stopping criterion M :50 and ρ:1e-2;
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Figure 5: Stopping criterion. The value of quality functional F is plotted
against the number of iterations N

• Transformation parameter η:0.05;

• Each 2 iterations 5 oldest members of k+1 node were substituted with
5 best members of k node;

• Number of branches:5.

The seed for random number generator was different for each run.
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