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Identifiability analysis

For the comprehensive analysis of modeling results it is necessary to know how reliable the parameter
estimates are. In practice insufficient or noisy data, as well as the strong parameter correlation or even
their functional relation may prevent the unambiguous determination of parameter values. In addition,
many models used in systems biology exhibit parameter “sloppiness” [1]. This means that there may
exist model parameters, estimations of which can vary by orders of magnitude without significantly
influencing the quality of fit. These uncertainties may become particularly problematic when models
are used explicitly to extract biological information from estimated parameter values or for prediction of
dynamical behavior of the model at different parameter values. For example, if several parameter values
are fixed, and if these parameters are correlated with those estimated by fitting, the correct prediction of
the system behavior may become infeasible. The detection of non-identifiable and sloppy parameters is
the subject of identifiability analysis.

Basically two approaches are used to handle non-identifiability: first, the model structure itself is
investigated with respect to non-identifiabilities. If such non-identifiabilities exist, they must be removed
analytically by introduction of new parameters, representing, e.g. an identifiable combination of several
non-identifiable parameters. This approach is referred to as a priori or structural identifiability analysis,
as the model structure is examined before simulating and fitting procedures. Within the second approach,
a posteriori or practical identifiability study, non-identifiabilities are detected by fitting to data and
investigating parameter estimates. Besides, parameter identifiability can be addressed either locally near
a given point or globally over the whole parameter space. In the current study we apply two local a
posteriori approaches to verify the reliability of parameter estimates, their correlations and to determine
non-identifiable and sloppy parameters.

Method based on asymptotic confidence intervals

The first method is based on asymptotic confidence intervals [2, 3]. This method is the most commonly
used approach to the local identifiability analysis. Let θ̂ be a parameter vector of size m which minimizes

S(θ) =
N∑

i=1

(yi(ti, θ)− ỹi)2 = Y T (θ)Y (θ),

where ỹi is an observed value, yi(ti, θ) is the corresponding model value, N is a number of observations. If
measurement errors are independent and normally distributed, θ̂i are the maximum likelihood estimates.
Then the asymptotic (1- α)-confidence region for the ’true’ parameter vector θ is determined from the
inequality

(θ − θ̂)T
(
JT J

)
(θ − θ̂) ≤ m

N −m
S(θ)Fα,m,N−m, (1)

where the Jacobian J = J(θ) = ∂Y (θ)/∂θ is the so-called sensitivity matrix of size N×m; Fα,m,N−m is an
α-quantile of F -distribution with m and N −m degrees of freedom. The inverse of the matrix JT (θ)J(θ)
multiplied by the variance of observation error is the covariance matrix of the parameter estimates.

The confidence intervals for an individual parameter θi in case of independent parameters can be
expressed as

(θi − θ̂i)2 ≤ m

N −m
S(θ)Fα,m,N−m(JT J)−1

ii . (2)

The size of confidence intervals characterizes the sensitivity of the model solution to parameter changes
and hence the reliability of the parameter estimate. If the search space is limited, confidence intervals
exceeding the parameter limits indicate the parameter sloppiness and hence non-identifiability. However,
if some parameters are strongly correlated the confidence intervals (2) which represent the projection of
the confidence area (1) onto the ith parameter axis are overestimated. In other words the confidence
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interval (2) is the whole area of the parameter variation as the other parameters take any possible values
from the m-dimensional area (1). In case of parameter correlation the confidence region is asymmetric and
its principal axes are inclined with respect to the parameter axes. As a result its projection, confidence
interval, is much larger than any intersection of the region with any line parallel to parameter axis. Such
an intersection represents confidence interval computed for the parameter as all the other parameter
values are fixed within the ellipsoid (1). This approach is illustrated in Figure 1 for two-parameter case.

High off-diagonal elements of the covariance matrix (JT J)−1 indicate strong linear dependencies of
parameter estimates. With respect to parameter identifiability this means that the effects of changes in
one parameter values on the model output can be compensated by the changes in other parameters. In
other words, different parameter values can lead to nearly the same model output; that is, the involved
parameters are poorly identifiable. However, the correlation matrix does not provide exhaustive infor-
mation about parameter identifiability in a high-dimensional parametric model, as it only reveals the
pairwise parameter correlations not being able to detect relations of higher order between three and more
parameters. In case of strong linear relations between parameters the matrix JT J is ill-conditioned and
its inversion is infeasible. A standard approximation of the inverse of an ill-conditioned matrix M is the
Moore-Penrose pseudoinverse M+ that is computed as (MT M + εI)−1MT , where ε is a small positive
number.

However, due to numerical difficulties the size of confidence intervals is very sensitive to the choice of
ε. To verify the identifiability results we apply the method exploiting another type of confidence intervals
based on profile likelihood [4]. The accuracy of pseudo-inversion algorithm thus is chosen so that two
types of confidence intervals provide the same set of identifiable parameters. The profile likelihood (PL)
is the likelihood function minimized with respect to all the parameters except one parameter which is
fixed

SPL,j(θ∗j ) = min
{θi:i6=j}

S(θ)|θj=θ∗j . (3)

The likelihood-based (1− α)-confidence interval for θj is defined by

{θj :
SPL(θj)− S(θ̂)

S(θ̂)
≤ 1

N −m
Fα,1,N−m}. (4)

These confidence intervals are known to be more accurate than the asymptotic ones for finite samples,
moreover the method doesn’t require an inversion of ill-conditioned matrix and allows to avoid compu-
tational errors.

To make sure that the estimate of parameter θj insignificantly differs from zero we compute the value
of SPL,j(0) and check whether θj = 0 satisfies (4).

Collinearity analysis of the sensitivity matrix

The other method to detect interrelations between parameters is the collinearity analysis presented in [5].
The method is suitable for models with large number of parameters. The aim of the method is to reveal
the so-called near collinear columns of the sensitivity matrix J(θ) = ∂Y (θ)/∂θ, and thus detect the
subsets of identifiable and non-identifiable parameters.

Columns of a matrix A are called near collinear if there exists a vector β = (β1, ..., βm)T such that
‖β‖ 6= 0 and Aβ ≈ 0. We consider all subsets, K, of k parameters (k ≤ m) from the whole set of m

parameters and the corresponding submatrices J̃K of size N × k of the normalized sensitivity matrix.
The matrix J̃K contains the columns Jj

‖Jj‖ , where Jj is a jth column of the matrix J ; indices j belong to

the subset K. The collinearity index of J̃K is defined as

γk =
1

min‖β‖=1 ‖J̃Kβ‖
=

1√
λk

, (5)
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Figure 1. Confidence area in case of two-dimensional parameter space. Maximum likelihood estimate
of the 2D parameter is labeled by a red spot. The asymmetric shape and inclination of the confidence
area indicates the parameter dependency. Projection of the 2D area onto the θ1 axis constitutes the
confidence interval for this parameter (marked by a double-sided arrow).

where λk is the minimal eigenvalue of the matrix J̃T
K J̃K .

The collinearity index has a simple interpretation: A change in the output vector Y (θ) caused by
a shift of a parameter θj ∈ K can be compensated in the linear approximation up to a fraction 1/γk

by appropriate changes in the other parameters in K. High values of γk indicate that the subset of
parameters K is poorly identifiable due to relations between at least two parameters.

The collinearity index is computed for all the subsets of the parameter space of all dimensions k < m.
The aim of the analysis is to detect all the parameter subsets with high collinearity index such that they
do not contain subsets of lower dimension for which the collinearity index is also high. Thus we reveal
all the non-identifiable parameters. The subsets with low collinearity index are identifiable.
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