Table S4 Novel motifs discovered by GEM in ENCODE dataGEM was applied on 9 ENCODE ChIP-Seq data with no publically described binding motifs. Six out of 9 GEM discovered primary motifs are consistent with expected binding sequences reported in literature.

Name	GEM Motif		Expected Binding	Why	Citations
		of GEM Motif	Pattern	expected?	
BATF	BATE-PCRIS Myers, GMI	O	AP-1 /TRE element TGACTCA	Jun, Fos, Maf, and ATF and bind to the AP- 1/TRE element.	T. Hai and T. Curran. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. <i>Proc. Natl. Acad. Sci. USA</i> , 88:3720- 3724, 11111.
					W. Ise, et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. <i>Nature</i> . 12:536-542, 2011.
CTCFL	CCC AGGGGGC	О	E E E E E E E E E E E E E E E E E E E	P.	T. Hore, J. Deakin, and J. Graves. The evolution of Epigenetic Regulators CTCF and BORIS/CTCFL in Amniotes. <i>PLOS Genetics</i> , 4(8): e1000169, 2008. doi: 10.1371/journal.pgen.100 0169
					T. Kim, et al. Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome. <i>Cell</i> , 128(6): 1231-1245, 2007.
Sp2	SP2-SC-61-VeHillO.	2	(5'-GGGCGGGAC- 3')	protein (not a related protein).	K. Moorefield, S. Fry, and J. Horowitz. Sp2 DNA Binding Activity and trans-Activation Are Negatively Regulated in Mammalian Cells. <i>J. Bioc. Chem.</i> , 279:13911-13924, 2004.
TR4	TR4_Snyder_KS62b_2.0	0, 1	ETS motif		H. O'Geen, et al. Genome-wide binding of the orphan nuclear receptor TR4 suggests

	TB4 Species E5/26, 2.1 ave	1		1	44.000
	TR4_Snyder_K562b_2_1_rev		· COT LACO A.		11-689.
	#GGTCA_AGGTC		GGUU CAGAUUTCA		Loss of TR4 Orphan
	"IJIJICAAAIJITC		**************************************		Nuclear Receptor
	MAINTEL		DR1 motif		Reduces
					Phosphoenolpyruvate
					Carboxykinase-Mediated
					Gluconeogenesis
FoxP2	FOXP2-PCRix_Myees_SK	0	FOXP2 binding site	FOXP2 has been shown	
	TAAACA		CAAATT		Identification of the
			OAATT		Transcriptional Targets of
			(A A A T		FOXP2, a Gene Linked
			(AAAT core)		to Speech and
					Language, in Developing
					Human Brain. Am. Jour.
					Hum. Genetics, 81:1144-
L	THAP1-SC 98174-v041_rev		2-1		1157, 2007.
THAP1	2- 2-	1			A. Sabogal et al. THAP
	21 7 7 7		As ASSTUTION		proteins target specific
			5' 1 2 3 4 5 6 7 8 9 10 11	by sequence analysis of	
					bipartite recognition of
	27 THAP1-SC-98174-041				adjacent major and minor grooves. Nat. Struct. Mol.
	a GCGT				Biol., 17:117-123, 2010.
					doi: 10.1038/nsmb. 1742.
				groove portion. Some of	
				the other logos may be	
				the minor groove.	
ZNF26	ZNF263_Snyder_K562b_rev	0	2	The paper proposed a	S. Frietze, et al. Genomic
3	*GGAGeAC		GAGCAC		Targets of the KRAB and
١	GUAGEAC		, , , , , , , , , , , , , , , , , , , ,	seq data as the primary	SCAN Domain-
			(claimed secondary		containing Zinc Finger
			motif at ZNF263		Protein 263. Am. Soc.
			sites)	significant portion of the	
				top binding sites.	285(2):1393-1403, 2010.
71.150-	ZNT274 Snyder K562h			ZNEOZA OLUB	0 5::
ZNF27	2	3			S. Frietze, et al. ZNF274
4	ATCAATC A				Recruits the Histone Methyltransferase
	"I CAA I CTA		CANTIL		ZETDB1 to the 3' Ends of
	° i vi vi vi				ZNF Genes. <i>PLOS One</i> ,
			XIII ME		5(12):e15082, 2010. doi:
					10.1371/journal.pone.001
					5082.
ZZZ3	27 ZZZ3 Snyder GM12878	0	GA-repeat		T. Suganuma, et al.
	AGAGAGAGAG	<u> </u>	C, i Topout		ATAC is a double histone
	^部 ムしっムしっムしっムしっ				acetyltransferase
	'n'n'n'n'n'n'n			ATAC family of proteins,	
	•			which are similar to GA-	nucleosome sliding. <i>Nat.</i>
				repeat binding proteins.	Struct. Mol. Biol., 15:364-
				Ī	372, 2008.