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Model equations

For convenience, we reintroduce our model equations. Consider a two-dimensional domain Ω with spatial
coordinate x = (x, y). Define ρ(x, t) = s(x, t) + g(x, t) as the locust population density field, with s(x, t)
and g(x, t) the solitary and gregarious components, respectively. The locust populations move with
velocities vs,g(x, t) and obey the equations

ṡ+∇ · (vss)= −f2(ρ)s+ f1(ρ)g, vs = −∇(Qs ∗ ρ), (1a)

ġ +∇ · (vgg)= f2(ρ)s− f1(ρ)g, vg = −∇(Qg ∗ ρ), (1b)

These equations generalize the classic swarming model

ρt +∇ · (ρv) = 0, v = −
∫

Ω

∇Q(x− x′)ρ(x′, t)dx′, (2)

which describes a single population density field advected by a velocity field arising from social interac-
tions. Eq. (2) has been studied extensively in one and two spatial dimensions for various social interaction
functions represented by Q, whose negative gradient is the effective social force [1–4]. Depending on Q,
solutions include steady swarms, spreading populations, and contracting groups (i.e., blow-up) [2, 5, 6].

In our two-phase model Eqs. (1), the velocities are

vs,g(x, t) = −∇Qs,g ∗ ρ ≡ −
∫

Ω

∇Qs,g(x− x′)ρ(x′, t) dx′, (3)

and the social interaction potentials Qs,g are

Qs(x− x′) = Rse
−|x−x′|/rs , Qg(x− x′) = Rge−|x−x

′|/rg −Age−|x−x
′|/ag . (4)

Here, Rs, Rg, Ag are interaction magnitudes and rs, rg and ag are interaction length scales. We require
Rgag−Agrg > 0 and Aga

2
g−Rgr

2
g > 0 so that Qg includes short range repulsion and long range attraction,

as in [5–7], as this is the clumping regime, appropriate to capture the tendency of gregarious locusts to
aggregate. We model the density-dependent rates of interconversion of the solitary and gregarious forms
as

f1(ρ) =
δ1

1 + (ρ/k1)
2 , f2(ρ) =

δ2 (ρ/k2)
2

1 + (ρ/k2)
2 . (5)

The parameters δ1,2 are maximal rates and k1,2 are characteristic locust densities at which the transitions
occur at half of their maximal values. To the best of our knowledge, our work is the first to consider
locust phase changes via continuum modeling of locust density [1–4].
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Parameter selection and estimation

As discussed in the main text, for our numerical results, we use two different sets of phase change
parameters. For both sets, we use the same social interactions parameters, and we now describe our
choices for these.

To estimate Rs, Rg, and Ag, we use explicit velocity computations. The speed of a locust when it is
alone varies between 72 - 216 m/hr, while the speed of a locust in a group varies in a tighter range of
144 - 216 m/hr [8]. To make a rough estimate of Rs, we imagine a hypothetical semi-infinite density field
ρ(x, y) = ρgroupH(x) where H(x) is the Heaviside function and, as mentioned in the main text, ρgroup =
65 locusts/m2 is the approximate critical density of a gregarious group [9]. A solitary locust placed at
the swarm’s edge (at the origin) should move to the left with maximal velocity vmax

s = −216 m/hr. From
Eqn. (3),

vs(0, 0) = {−∇Qs ∗ ρgroupH(x)}
∣∣
(0,0)

= vmax
s , (6)

which we solve to find Rs = 11.87 m3/(hr · locust). Similarly, a gregarious locust at the origin should
move to the right with maximal velocity vmax

g = 216 m/hr, so

vg(0, 0) = {−∇Qg ∗ ρgroupH(x)}
∣∣
(0,0)

= vmax
g . (7)

A gregarious locust placed to the left of the swarm at a distance equal to the attraction length scale
ag = 0.14 m should also move to the right, but with a slower velocity which we take to be the minimal
velocity in a crowd, vmin

g = 144 m/hr. Thus

vg(−0.14, 0) = {−∇Qg ∗ ρgroupH(x)}
∣∣
(−0.14,0)

= vmin
g . (8)

These two conditions determine Rg = 5.13 m3/(hr · locust) and Ag = 13.33 m3/(hr · locust) In the main
text, we present numerical simulations of Eqs. (1) in one spatial dimension. For these simulations, we take
δ1,2, rs, rg, and ag as above, since these parameters do not depend on spatial dimension. For the remaining
parameters, we follow a process similar to that described above, and choose k1,2 = k = 8 locusts/m,
Rs = 6.83 m2/(hr · locust), Rg = 6.04 m2/(hr · locust), and Ag = 12.9 m2/(hr · locust).

Homogeneous steady states

For any set of initial conditions, the mean locust density ρ0 is known, and corresponds to the total
density at the homogeneous steady state (HSS). Accordingly, there is a family of homogeneous steady
states parameterized by ρ0. The corresponding solitary and gregarious HSS components, obtained by
setting time and space derivatives to zero in Eqs. (1) are

s0 =
ρ0δ1k

2
1(k2

2 + ρ2
0)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

, (9a)

g0 =
δ2ρ

3
0(k2

1 + ρ2
0)

δ1k2
1k

2
2 + δ1k2

1ρ
2
0 + δ2k2

1ρ
2
0 + δ2ρ4

0

. (9b)

When we later consider stability of homogeneous steady states, it will be convenient to discuss the
fractions φs,g of solitarious and gregarious locusts, where φs + φg = 1. Using Eqn. (9), we know that for
homogeneous steady states,

φg =
g0

s0 + g0
, (10a)

=
1

s0/g0 + 1
, (10b)

=

{
1 + γK2 1 + ψ2

ψ2(ψ2 +K2)

}−1

. (10c)
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Here, γ = δ1/δ2 is the ratio of maximal solitarization rate to maximal gregarization rate, K = k1/k2 is
the ratio of the characteristic solitarization and gregarization densities for individuals, and ψ = ρ0/k2 is
a rescaled density. Note that φg is monotonically increasing in ψ, and hence in ρ0; that is to say, as total
density increases, the gregarious fraction increases.

Linear stability analysis

To study the stability of the HSS in Eqs. (9), we consider small perturbations s1, g1 about s0, g0

s(x, t) = s0 + s1(x, t), g(x, t) = g0 + g1(x, t), (11)

so that ρ(x, t) = s0 + g0 + s1(x, t) + g1(x, t). Substituting Eqn. (11) into Eqn. (1) and expanding to first
order in the perturbations, we find the linearized equations

ṡ1 = s0Qs ∗ ∇2(s1 + g1)−As1 +Bg1, (12a)

ġ1 = g0Qg ∗ ∇2(s1 + g1) +As1 −Bg1, (12b)

where

A = f2(ρ0) + f ′2(ρ0)s0 − f ′1(ρ0)g0, (13a)

B = f1(ρ0) + f ′1(ρ0)g0 − f ′2(ρ0)s0. (13b)

Here, A,B > 0 for all ρ0 > 0 since f1 is a monotonically increasing function of ρ0 and f2 is a monotonically
decreasing one. To further analyze the linearized equations, we Fourier expand the perturbations as

s1(x, t) =
∑
q

Sq(t)eiq·x, s2(x, t) =
∑
q

Gq(t)eiq·x. (14)

We allow for an infinitely large domain so that there are no restrictions on q; in other situations, q must
be suitably restricted in order to satisfy boundary conditions. Substituting Eqn. (14) into Eqn. (12) yields
ordinary differential equations for each Fourier mode amplitude. We write these in matrix form,

d

dt

(
Sq
Gq

)
= L(q)

(
Sq
Gq

)
, (15a)

L(q) ≡

(
−s0q

2Q̂s(q)−A −s0q
2Q̂s(q) +B

−g0q
2Q̂g(q) +A −g0q

2Q̂g(q)−B

)
. (15b)

Here, q = |q| is the perturbation wavenumber, and Q̂s,g(q) are the Fourier transforms of the two dimen-
sional social interaction potentials,

Q̂s(q) =
2πRsr

2
s

(1 + r2
sq

2)3/2
, (16)

Q̂g(q) =
2πRgr

2
g

(1 + r2
gq

2)3/2
−

2πAga
2
g

(1 + a2
gq

2)3/2
. (17)

The eigenvalues λ1,2(q) of L(q) are

λ1(q) = −q2
[
s0Q̂s(q) + g0Q̂g(q)

]
, λ2 = −(A+B). (18)
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Since λ2 < 0, instability occurs only when λ1 > 0. For convenience, we rewrite λ1 in terms of the
gregarious mass fraction φg,

λ1(q) = −ρ0q
2
[
(1− φg)Q̂s(q) + φgQ̂g(q)

]
. (19)

Now we factor out the attractive part of the gregarious term, namely

φg
2πAga

2
g

(1 + a2
gq

2)3/2
. (20)

This yields

λ1(q) = −ρ0q
2φg

2πAga
2
g

(1 + a2
gq

2)3/2

[
1− φg
φg

Rsr
2
s

Aga2
g

(1 + a2
gq

2)3/2

(1 + r2
sq

2)3/2
+
Rgr

2
g

Aga2
g

(1 + a2
gq

2)3/2

(1 + r2
gq

2)3/2
− 1

]
. (21)

Since the prefactor is negative, and we seek conditions for a positive eigenvalue (signifying growth of
perturbations, and hence instability), we focus on when the term in square brackets becomes negative.
The dependence on φg occurs via the prefactor (1 − φg)/φg in front of a positive term. For possible
instability, this term should be small, meaning that φg should be sufficiently large (since this prefactor
is monotonically decreasing with φg). Since φg increases monotonically with ρ0 (as discussed above),
instability may occur as ρ0 is increased.

We now show that instability first occurs at the wavenumber q = 0 (meaning that perturbations that
first lead to instability are long wavelength). We again focus on the bracketed quantity in Eq. (21). If
this term becomes negative, it must do so for the value of q at which the first two terms are (together)
minimized, since these are positive terms and the negative term, −1, is a constant. It is biologically
reasonable to assume that ag ≥ rs (with equality achieved for our chosen social interaction parameters).
Therefore, the first term is either constant or monotonically increasing in q. It is also biologically reason-
able to assume that ag > rg, in which case the second term is monotonically increasing in q. Thus, the
first two terms together are monotonically increasing in q, so their minimum occurs at q = 0, and this
will be the first wavenumber to trigger instability. Thus, if we are looking for the instability that occurs
as φg increases, it is sufficient to consider what happens at q = 0.

We substitute q = 0 into the bracketed term in Eqn. (21) and ask for what value of φg the resultant
expression changes sign (to find the threshold level of gregarious locust fraction needed for instability).
Setting that bracketed term to zero we obtain

φ∗g =
Rsr

2
s

Rsr2
s −Rgr2

g +Aga2
g

. (22)

Instability is achieved for values of φg greater than this threshold value.
To obtain a more explicit condition for instability in terms of the density ρ0, we substitute φ∗g into

Eq. (10), which relates gregarious fraction to total (scaled) density. Rearranging, we obtain the bi-
quadratic equation

Aψ4 +Bψ2 + C = 0, (23)

where

A =
1

φ∗g
− 1, (24a)

B = K2

(
1

φ∗g
− 1− γ

)
, (24b)

C = −γK2. (24c)
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For any biologically meaningful solutions, the solution for ψ2 must be positive. From the quadratic
formula, we have

ψ2 =
−B ±

√
B2 − 4AC

2A
. (25)

Since A > 0 and C < 0, the discriminant is positive. Hence, for the plus sign choice, ψ2 > 0. For the
minus sign choice, ψ2 < 0 and hence we eliminate this possibility. The final result for the critical scaled
density is

ψ∗ =

√
−B +

√
B2 − 4AC

2A
. (26)

This is the result that we use to produce instability contours in the K-γ plane (Fig. 2 in the main paper).

Numerical simulation method

We simulate Eqs. (1)-(5) in one spatial dimension. We use periodic boundary conditions on a domain of
length L with a fine grid consisting of N = 1024 points (necessary to resolve the steep edges of clusters
that form). To approximate an unbounded domain, one may take the limit of large L. The social
interactions Qs,g in (4) must be adapted to be commensurate with a periodic domain. We begin with the
function Q(x) = e−|x|/r, which is the building block of Qs,g. We calculate the discrete Fourier transform
F of −∂xQ on our domain as

F{−∂xQ(x)} = − i
r

∆ sin(∆q)

cosh(∆/r)− cos(∆q)
, (27)

where r is the decay length scale in Q and ∆ = L/N is the grid spacing. From Eqn. (27) it is straight-
forward to compute the Fourier transforms of Qs,g. Convolutions are equivalent to products in Fourier
space, providing excellent computational savings (and thus justifying the choice of a periodic domain).
We compute velocities by convoluting the density with −∂xQs,g pseudospectrally. The flux term in
Eqs. (1) is instead evaluated via a fourth-order accurate central finite difference.

The emergence of discontinuities in s and g causes ringing in the pseudospectral evaluation of the
velocity term. In order to smooth this effect, we incorporate small amounts of numerical diffusion.
Another standard approach would be to incorporate high wave number filtering in the simulation. We
choose numerical diffusion because it also serves as the macroscopic description of random motion, which
locusts certainly display. We implement diffusion in a split-step manner, alternating with the dynamics of
Eqs. (1)-(5). Time-stepping is performed with the fourth-order Runge-Kutta method. We also threshold
our velocity field at every time step so that it does not exceed vmax

g . Without this thresholding, individual
locusts achieve velocities of up to approximately 1.5 times vmax

g at an intermediate stage of our simulation.
It is crucial to point out that this thresholding only affects the speed of the transient clumps; it does
not affect the initial instability (which is small amplitude, and thus has a small velocity) and similarly,
it does not affect the late-stage bulk dynamics (which are nearly spatially stationary).
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