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1 Methodic details

1.1 Measurement of the boundary width

By default we determine the boundary width in the following two ways:
Let cmn,s be the copy number of species s in a nucleus with angular index m < Nφ and axial index

n < Nx, where Nφ is the number of rows around the circumference of the cylinder, and Nx is the number
of colums in the axial direction along the AP axis. To compute the boundary width of the expression
domain of a gap protein s, we compute for each row m Tm

n,s = (cmn,s − θs) · (cmn+1,s − θs) as a function of n,
where θs is half the copy number expected at full activation. A boundary position xm

t = xm(nt + 1
2 ) is

defined as the position (nucleus) where Tm
nt,s < 0. The values of xm

t are recorded in a histogram; here, the
positions for the different rows m are put in the same histogram. The histogram is normalized at the end
of the simulation, and the boundary width ∆x is calculated as the standard deviation of this histogram.

Secondly, at the end of the simulation, the slope of the average, 〈H(xt)〉′, and the standard deviation
of the total Hb copy number σH(xt) at the Hb boundary position xt are calculated from the time-
and φ-averaged profiles. From this, an approximation for the boundary width given by ∆x ≈ σ(xt)

|〈H(xt)〉′|
is obtained, following [1–3]. To this end, first xt is determined in the same way as in the runtime
measurements, only now working on the (both time- and circumference-) averaged profile. We describe
in the following section how the steepness 〈H(xt)〉′ is measured.

1.2 Measurement of the profile steepness

In our discrete system the measurement of a local derivative at the boundary position xt is a process
prone to even small stochastic variations if a naive measurement technique is chosen. If the average
boundary position xt for a set of different samples with identical initial conditions always is in between
two particular nuclear positions x(n0) and x(n0 + 1), then using linear differences to determine the
steepness 〈H(xt)〉′ at the boundary position may give a reasonable estimate. If, however, xt fluctuates
around a particular nuclear position x(n0) among different samples and 〈H(x(n0 − 1))〉 − 〈H(x(n0))〉
significantly differs from 〈H(x(n0))〉 − 〈H(x(n0 + 1))〉, the linear differences method will produce a large
error bar and also markedly affect the mean of xt among these samples. As a result both the measured
steepness and the quality of that measurement for a given set of parameters depends on whether xt

accidently happens to predominantly vary in the interval between the same nuclear positions or not. To
overcome this illness we measure the boundary steepness from the average protein profile by a two-step
polynomial fitting procedure: First we fit a polynomial of 3rd degree to a region of the data around xt

that contains at least four points (nuclei). The derivative of the polynomial at xt gives an initial estimate
of the boundary slope, which we use this to calculate the approximative x-interval over which the profile
falls from maximal to minimial expression level. If the latter is larger than the original fitting range
(which usually is the case) we repeat the fitting on the enlarged interval. Since the profiles to a good
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approximation are sigmoidal functions this improves the quality of the fit. The measured boundary slope
then is defined as the derivative of the polynomial function at xt after the second fitting.

1.3 Number of cortical nuclei at cell cycle 14

The development of the Drosophila embryonic syncytium starts with a single nucleus. The first 9 nuclear
divisions happen in the yolk. During cell cycles 7 to 10 a migration of the nuclei towards the cortex
can be observed. However, approximately 200 polyploid nuclei stay behind in the yolk and stop dividing
after their 10th cycle [4]. This quiescence persists during subsequent cell cycles, including cycle 14. As
an effect of this, the number of nuclei at the cortex in cycle 14 is considerably lower than 213 = 8192. An
estimate of the reduced number of cortical nuclei is given by:

Ncortex ' (29 − 200) · 24 = 4992 (1)

This number indeed is closer to 212 than to 213. Note that in our model the precise number of nuclei
does not matter, rather it is the distance between the nuclear compartments and the diffusion correlation
length that impact on the results. Our values for both the internuclear distance and the nuclear diameter
correspond to the experimental values reported by Gregor et al. [2, 5].

1.4 Predicted copy numbers and effective protein lifetime

Our main observables are the total copy numbers of Hb and Kni, defined as follows:

H ≡ cmn,H = cmn,HM
+ 2cmn,HD

+ 2
5∑

j=0

cmn,K1
j

K ≡ cmn,K = cmn,KM
+ 2cmn,KD

+ 2
5∑

j=0

cmn,H1
j

(2)

Here, for G ∈ {H,K}, cm
n,G1

j
= 1 if the promoter of species G is binding j morphogen molecules and one

(repressing) gap dimer; evidently, at any given moment in time cm
n,G1

j
can be equal to one for only one

j ∈ {0..5}.
The ratio between the number of monomeric and the number of dimeric proteins is a nontrivial

function of the monomer production rate, the monomer and dimer degradation rates and the parameters
that determine the dimerization and dedimerization reactions. To obtain an estimate for the expected
copy numbers of monomers and dimers of gene g we solved the mean-field rate equations for a simplified
model which comprises monomer production, (de)dimerization and monomer and dimer degradation only,
i.e. in which promoter state fluctuations and diffusion are neglected, in the steady state. We assume here
that stochastic monomer production events can be accounted for by an effective mean-field production
rate 〈β〉 = β〈H0

5 〉 for Hb and similarly for Kni, which depends on promoter (un)binding parameters and
the particular morphogen and repressor levels. This yields the following prediction for the copy number
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of monomers (GM,〈β〉) and dimers (GD,〈β〉):

GM,〈β〉 =
1

4kD
onµD

{
2kD

onµD − kD
offµM − µMµD

+
√

8〈β〉kD
onµD

(
kD

off + µD

)
+
[
µM

(
kD

off + µD

)
− 2kD

onµD

]2}

GD,〈β〉 =
1

8kD
onµ

2
D

{
kD

offµ
2
M + µD

[
4〈β〉kD

on + µM

(
µM − 2kD

on

)]
− µM

√
8〈β〉kD

onµD

(
kD

off + µD

)
+
[
µM

(
kD

off + µD

)
− 2kD

onµD

]2} (3)

Here µM (µD) is the monomeric (dimeric) degradation rate and kD
on (kDoff) are the dimerization forward

(backward) rates, respectively. From this we calculate the total expected copy number G〈β〉 := 2GD,〈β〉+
GM,〈β〉 at effective production rate 〈β〉. In particular in the full-activation case, i.e. when the probability
to be fully activated and unrepressed 〈G0

5〉 ≈ 1 and therefore 〈β〉 ≈ β, the above estimates correspond to
average values from our simulations very well.

We define the effective degradation as µeff = µeff(GM, GD) = 1
GM+2GD

(µMGM + 2µDGD). Our stan-
dard values result in µeff ≈ 4.34 · 10−3 /s with GM = GM,β and GD = GD,β .

2 Additional analysis

2.1 Poissonian limit with dimerization

In [3], it was shown that, when D →∞, the variance in the protein concentration becomes equal to the
mean concentration: diffusion washes out bursts in gene expression, thus reducing the non-Poissonian
part of the noise. However, in that model the proteins do not dimerize, in contrast to our model. With
dimerization, a different limit for the variance in the total protein concentration is approached as D →∞.
To derive this limit, first note that the total protein copy number G of a protein G is G ≈ 2GD + GM.
Assuming that 〈GDGM〉 ≈ 〈GD〉〈GM〉 (our simulations indicate that this approximation is very accurate),
we find that the variance σ2

G in G is:

σ2
G ≈ 4σ2

GD
+ σ2

GM
, (4)

where σ2
GD

is the variance in the dimer level GD and σ2
GM

is the variance in the monomer level GM. Both
monomers and dimers are subject to spatial averaging, and therefore their variances can be written in
the form [3]:

σ2
GM

= GM +
1
N

(
σ2

0,GM
−GM

)
σ2

GD
= GD +

1
N

(
σ2

0,GD
−GD

)
(5)

Here N is the number of nuclei contributing to the averaging, which is proportional to D, and σ2
0,GM/D

is
the variance in the monomer and dimer levels in the absence of diffusion, respectively. The part preceded
by 1/N represents the variance that can be reduced by spatial averaging. Plugging these expressions into



4

the previous and using G = 2GD +GM we arrive at:

σ2
G = 4GD +GM +

1
N

[
4σ2

0,GD
+ σ2

0,GM
− 4GD −GM

]
=
(

1 +
2GD

G

)
G+

1
N

[
σ2

0,G −
(

1 +
2GD

G

)
G

]
=: (1 + fD)G+

1
N

[
σ2

0,G − (1 + fD)G
]

(6)

Note that N is the same for both monomers and dimers because their diffusion constant does not differ
in our model. Evidently, the lower bound for σG in the limit N → ∞ is not

√
G any more, but given

by
√

(1 + fD)G, where fD is the fraction of proteins in the dimer state with respect to the total protein
number (implying fD ≤ 1). This is indeed what we observe in our data for σG. In our simulations
the equilibrium is strongly shifted towards the dimerized state, so that fD ≈ 0.97. We can understand
the limit N,D → ∞ intuitively by noting that in this limit there is no noise in the nuclear protein
concentration due to the stochastic production and decay of molecules in each of the nuclei—this is
because the synthesized molecules are immediately donated to a reservoir that is infinitely large; instead,
there is only noise in the nuclear protein concentration due to the sampling of molecules from this
reservoir, which obeys Poissonian statistics: σ2

GM
= GM and σ2

GD
= GD. This yields, for N,D → ∞,

σ2
G = 4σ2

GD
+ σ2

GM
= 4GD +GM = (1 + fD)G.

2.2 Bifurcation analysis

In order to predict the regions in which bistability can be expected for different amplitudes A of the
morphogen gradients we performed a deterministic mean-field bifurcation analysis for a simplified 1-
dimensional version of our model of mutual repression between hb and kni . The analysis is based on the
following two equations describing the change of the mean-field total copy number of Hb (H(x)) and Kni
(K(x)) at position x:

∂tH(x) = βH(x)
K2

R

K2
R + [fDK(x)]2

− µHH(x) (7)

∂tK(x) = βK(x)
K2

R

K2
R + [fDH(x)]2

− µKK(x) (8)

Here βH and βK represent the protein synthesis rates, µH and µK the corresponding (effective) degra-
dation rates, KR is the dissociation constant of cooperative repressor binding to the promoter and fD is
the fraction of proteins in the dimerized state. Note that, since the intermediate step of dimerization is

neglected here, we have to take KR =
√
kRoff/k

R
on if kRon and kRoff are the binding rates of the dimers. To

facilitate calculations we make two further simplifying assumptions here:

1. We neglect activation dynamics and resulting promoter state fluctuations, i.e. we assume that
certain constant levels of the activators at position x lead to average constant production rates
βH = β([Bcd](x)) and βK = β([Cad](x)), respectively. In our standard case β([Act](x)) =
[Act]5(x)/([Act]5(x) + 6905) for both [Act] = [Bcd] and [Act] = [Cad].

2. In our simulations we have different degradation rates for monomers and dimers so that the effective
total degradation rate depends on the monomer-to-dimer ratio, which in turn varies with the total
copy number (see section 1.4). Thus, in principle, also fD and µH and µK are functions of x,
or the corresponding activator levels. Since this introduces further nonlinearities into the above
equations and complicates their solution, we substitute the degradation rates µH and µK by a
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constant value µeff , which is the effective degradation rate for the maximal expression level (full
activation). Also for fD we take the constant value for full activation, fD ' 0.97, which reflects
that the dimerization equilibrium in our simulations is strongly shifted towards the dimerized state.
The predictions concerning the bifurcation behavior only change marginally if µeff and fD values
for lower expression levels are used.

For each position x with local activator levels corresponding to the ones in the simulations we calcu-
lated fixed point solutions for the copy number pair (H(x),K(x)) starting from the steady-state assump-
tion ∂t(H(x),K(x)) = (0, 0). The stability of the fixed points was determined starting from the Jacobian
for the above ODE system:

J(H,K) =
(
∂H [∂tH] ∂K [∂tH]
∂H [∂tK] ∂K [∂tK]

)
(9)

Within the relevant parameter regime we obtained fixed points with either two negative eigenvalues
(i.e. stable fixed points) or one positive and one negative eigenvalue (i.e. saddle points). The determinant
therefore completely characterizes the stability of the fixed points. If det J(H0,K0) < 0, then (H0,K0)
is a saddle point. Otherwise it is stable.

Fig. S1 shows the fixed point solutions for Hb and Kni as a function of x for different activator
amplitudes A. Stable solutions are drawn with solid, unstable solutions with dashed lines. Depending
on the A value, the system displays a saddle node bifurcation at a point towards the anterior (Hb) or
posterior (Kni) from midembryo. Within the region confined by the bifurcation points two stable and one
unstable fixed points exist for each gene, implying bistability. The region clearly widens for increasing A
and spans almost the whole embryo length for A = 8. Our deterministic analysis therefore predicts the
enlargement of the region of bistability as observed in our single nucleus simulations.

2.3 Estimation of switching times

To quantify the swiching times in the presence of bistability we performed simulations of isolated single
nuclei featuring the same set of reactions and parameters as in the full scale simulation. To obtain
estimates of switching times at different positions x along the AP axis we set the levels of Bcd and Cad
in the given nucleus equal to the ones at x in the space-resolved simulations. The switching time was
estimated by calculating from long time trajectories of the total Hb and Kni copy numbers the relaxation
time ts of the average correlation function

〈C(t)〉t0 ≡
〈IH(t0)IK(t)〉t0
〈IH(t0)〉t0

(10)

where IH (IK) are indicator functions which are one if the difference in the total gap gene copy numbers
∆N = H −K is above (below) a certain threshold ΘN (−ΘN). ΘN thus defines the regions within which
the switch is considered to have switched to the Hb–high or Kni–high states, respectively, and serves to
separate the stable attractor states from the transition region. We found that ΘN = 200 is a reasonable
choice for our set of parameters.

We determined the switching times from one long sample for different positions x and different acti-
vator amplitudes A and find that ts is very similar within the double-activated bistable regions for high
A. To obtain an error estimate we additionally calculated block averages of estimated switching times
among 10 long samples for various A at midembryo (x = L/2). Table S1 shows our results from the latter
procedure.

Note that for A = 1 the system is not truly bistable yet because for A = 1 we have half-activation
at midembryo and due to the lack of diffusion large promoter-state fluctuations dominate over long-time
switching potentially induced by mutual repression. Consequently, the given number does not reflect a
switching time. We cite it here for completeness, however.
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Table S1. Switching times at midembryo for different activator levels.
Activator amplitude A Switching time ts[s]

(1) (6343.7 ± 17.2)
2 20302.5 ± 74.5
4 20957.3 ± 54.9
8 20994.7 ± 67.2

2.4 Analysis of statistical properties of the boundary

Our measures for both the boundary steepness and the variance of the boundary position are based on
averages over both the time and the circumference of the embryo which were calculated during runtime.
While the double-averaging procedure limits the amount of data that must be stored and facilitates
rapid acquisition of good statistics, it also discards information about the microscopic properties of the
boundary at a given time instance. Based on the average data it is impossible to determine whether the
blurring of the boundary quantified by ∆x is due to concerted stochastic movements of a steep and rather
homogeneous instantaneous boundary or simply due to stochastic fluctuations of the boundary position
in each nuclear row around a well-defined constant mean boundary position (or due to both). In the
latter case the boundary will be rough at each given time instance, i.e. the time average of the boundary
position variance in the cicumferential direction will be large, but the time variance of its circumferential
mean will be negligible. The opposite will be the case in the other extreme. These quantities therefore
can be used to distinguish the two hypothetical situations. The overall boundary width in both cases is
given by the sum:

∆x2 = σ2
xt(φ) + σ2

〈xt〉φ(t) (11)

Here 〈. . . 〉φ denotes the average over the circumference, while the bar denotes the time average. An
identical variance decomposition can be made for the fluctuations of the Hb copy number at any position
x along the AP axis. Similarly, comparing the average of the profile steepness for a particular nuclear
row and time instance to the steepness of the time- and circumference average of the copy number
reveals whether the steepness of the average profile is due to concerted movements of similarly shallow
instantaneous profiles or due to unconcerted fluctuations of steep instantaneous profiles.

In order to determine which of the portrayed blurring mechanisms is dominant in our system we
performed the described variance decomposition for a set of 100 instantaneous outputs of the fully resolved
2D system in steady state, i.e. for 6400 different total Hb copy number profiles along the AP axis, for
both the variances at the boundary and for the steepness at the boundary and for both the system with
and without mutual repression. We focused on our standard parameter set (see Table S2) and a range of
gap protein diffusion constants D.

2.4.1 At each time instance the boundary is rather rough

Fig. S2 shows for the systems with (Fig. S2A and C) and without (Fig. S2B and D) mutual repression
the variance decomposition for the variance of the Hb copy number at the boundary (Fig. S2A and
B) and for the variance of the boundary position xt (Fig. S2C and D) as a function of the Hb protein
diffusion constant D. As a control we compare the total variances calculated from the instantaneous
profiles to the variances accumulated during runtime and, in case of ∆x, to the value obtained from the
approximation ∆x = σH(xt)/|〈H(xt)〉′| (note that here 〈. . . 〉 is the average over both time and φ). We see
a good agreement between these quantities. The plots reveal that both for σH(xt) and ∆x the variance
over the circumference at a fixed time is by far the dominant contribution to the overall variance. This
implies that in our system the boundary is indeed very rough at each time point and that concerted
boundary movements do not occur.
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2.4.2 At each time instance the profiles are slightly steeper than their average

The calculation of the variance decomposition is less straightforward for the slope. In particular for low
D, when spatial averaging is still inefficient, the instantaneous profiles are very ragged and the boundary
threshold value typically is crossed at multiple positions along the AP axis. This makes it impossible to
uniquely define an instantaneous boundary position as required to calculate the instantaneous boundary
slope. In order to perform the analysis at least on a subset of the data we introduced a protocol which
only takes into account instantaneous profiles with a single boundary crossing, rejecting all other profiles.
For low D, however, the rejection rates rise above 90%. We therefore decided to smoothen the profiles by
computing running averages between a fixed number ν of nuclei along the AP axis before the analysis.
The averaging lowers the rejection rate dramatically, however it also decreases the profile steepness and
therefore manipulates the observable of interest. Nevertheless we can make a qualitative statement on
the base of the results obtained for only slight smoothening of the profiles (ν = 3). For simplicity and
due to increased data abundance, in this analysis we used simple finite differences to determine the slope.

In Fig. S3 we plot the average of the instantaneous boundary steepness for different degrees of
smoothening (averaging over ν = 3, 5, 7 nuclei along the x-axis) as a function of D and compare to the
steepness of the average Hb profile for the system with (S3A) and without (S3B) mutual repression.
While the data for ν > 3 clearly must be considered biased by the running averages, the values for ν = 3
show that the instantaneous boundary slope on average is higher than the slope of the average profile, in
particular for low diffusion constants.

The variance decomposition for the boundary position xt shows that the variance of the circumference
mean of the boundary position in time is very small. This implies that the steepness of the circumference-
averaged profiles should be approximately equal to the steepness of the time- and circumference-averaged
profile. As a control we therefore repeated the above analysis on the 100 φ-averaged instantaneous
profiles of the same dataset. The averaging along the circumference significantly reduces the number of
profiles with ambiguous boundary positions. We therefore were able to obtain reasonable estimates of the
observable without pre-smoothening of the profiles (ν = 1). The results are shown in Fig. S3C for the
system with mutual repression and Fig. S3D for the system without mutual repression. In the system
with mutual repression the average slope of the φ-averaged profiles for ν = 1 agrees well with the slope
of the both time- and φ-averaged Hb profile. In the system without mutual repression the φ-averaged
profiles are slightly steeper than the average.

3 Additional simulations

3.1 Influence of the Hill coefficient

To address the influence of changing activator cooperativity on our results we performed simulations with
reduced number of activator binding sites nmax. While in our model this is achieved by simply reducing
the number of intermediate states between the empty promoter state and the producing promoter state,
the binding parameters have to be rescaled with care to preserve the activation equilibrium at midembryo.
Since we assume the activator binding rates to be diffusion limited, the necessary changes affect the
unbinding rates kA

off,n = a/bn. However, even when preserving the equilibrium, the freedom in the choice
of these parameters allows for altering the time scale of transitions between the different activation levels.
In order to rescale the rates in a unique fashion upon lowering nmax we imposed the following constraints:

1. For all nmax the effective activator dissociation constant at midembryo KA
D = A1/2 = 690 is

preserved, which implies that for all nmax the average activation probability at midembryo is 1/2.

2. The waiting-time distribution for the unbinding from the producing state is the same for all nmax
and, for comparison, equal to the one for the default cooperativity nmax = 5, i.e. ∀n : kA

off,nmax
=

const = kA
off,5.
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3. The off-rate reduction per subsequent activator binding is always 1/b, i.e. ∀n : b(n) = b.

Note that for nmax = 1 the first two conditions can be met together only if KA
Dk

A
on = kA

off,5, which
is not the case for our parameter set. We therefore restricted ourselves to nmax ∈ {2, 3, 4, 5}. For each
nmax, the above constraints were used to uniquely determine the parameters a and b from the exact
analytical solution for the average occupancy of the producing state, which was obtained from steady-
state mean-field solutions of the chemical mass-action ODEs. Interestingly this results in only minor
differences in a among the different nmax values, while the reduction per binding step 1/bnmax becomes
significantly larger for lower nmax. This fact has an important implication for the noise charactistics of
the different promoters: If anmax ' a = const for all nmax then the unbinding rate from the state binding
(nmax − 1) activator proteins (the “highest” non-producing activator state) is given by:

kA
off,(nmax−1) ' a/b

(nmax−1)
nmax

= bnmaxk
A
off,5

Since bnmax markedly increases with decreasing Hill coefficient the off-rate kA
off,(nmax−1) for low nmax will

be higher than the corresponding rate for high nmax. This will favor rapid returns to the producing
state with nmax bound activator molecules for high Hill coefficients, whereas for low Hill coefficients the
promoter is more likely to descent into the regime with less activator molecules bound. The fact that
this is less likely for higher Hill coefficients is compensated by the fact that also the time to return to
the producing state from the states binding low numbers of activator molecules on average is longer for
higher nmax. Note that the mean off-time–just as the mean on-time–is the same for all nmax. In short,
for the promoters with higher Hill coefficients we expect an off-time distribution with high probability
weight on short off-times and a long low-probability tail for long off-times, while the distribution for lower
Hill coefficients should resemble an exponential.

In order to illustrate this effect we recorded long time-trajectories of the occupancy of the producing
state in a single isolated nucleus close to midembryo for different nmax and without mutual repression nor
diffusion. All other parameters were kept at the standard values. From these trajectories we determined
the on- and off-times of the promoter and binned them into a histogram. The results are shown in Fig.
S5. It can be seen that while for nmax = 2 the two distributions are exponential with approximately
equal mean, the off-times distribution increasingly deviates from an exponential distribution as nmax
is increased; more probability is shifted to very short off-times and very long off-times, causing the
emergence of a long tail in the distribution.

3.1.1 Also for lower Hill coefficients mutual repression steepens profiles without corrupting
boundary precision

The broadening of the off-times distribution is expected to result in higher output noise for high nmax
as compared to low nmax. This is confirmed by the simulations of the full-scale spatially resolved system
for different nmax. Fig. S6 shows σH(xt), the average standard deviation of the total Hb copy number at
the boundary position xt (upper panels), the steepness |〈H(xt)〉′| of the average Hb profile at xt (middle
panels) and the boundary width ∆x (lower panels) as a function of the gap protein diffusion constant D
for nmax ∈ {2, 3, 4, 5}. σH(xt) is indeed decreasing upon lowering nmax, in particular in the regime of low
diffusion constants. For higher diffusion constants the decrease is less pronounced: spatial averaging is
efficient enough to lower the output noise down to the observed values irrespective of the width of the off-
time distribution. The noise decreases less markedly for the systems with mutual repression. This is most
likely due to the fact that lowering nmax also increases the probability of occasional repressor production
beyond midembryo, which in turn increases the noise. The steepness plots reveal that, although the
profiles naturally become less steep for lower nmax, the steepness in the systems with mutual repression
is markedly higher than the one in the system without mutual repression. In all systems the steepness
as a function of D shows a very similar behavior: Upon increasing D the steepness in the systems with
mutual repression first increases towards a maximum before it rapidly decreases. Since both σH(xt) and
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|〈H(xt)〉′| change with nmax in a similar fashion, in particular in the region around D = 1 µm2/s, the
width ∆x as a function of D also looks very similar in this region for all nmax. In all cases the profiles
in the system with mutual repression are more precise and markedly steeper as compared to the system
without mutual repression at a D-value which is one order of magnitude less than the optimal value in the
systems without mutual repression. Therefore the basic effect observed in our simulations for nmax = 5
persists in the simulations for lower Hill coefficients.

3.1.2 Lower Hill coefficients allow for stronger morphogen level variations

Although lowering nmax in our system reduces the protein production noise it also markedly decreases
the steepness of the gene activation profiles. An important implication of this is that for lower nmax
the activation probability beyond midembryo increases. Lowering nmax thus is similar to increasing
the activator amplitude A and, in principle, might result in the creation of a bistable region around
midembryo already for lower A-values as compared to the system with nmax = 5. We analysed how the
results for ∆x as a function of A for the case of correlated variations change as nmax is decreased. Fig. S7
shows ∆x(A) for nmax ∈ {2, 3, 4, 5} and D = 1.0 µm2/s for systems with and without mutual repression.
Overall, ∆x(A) is very similar for all considered nmax. For A ≤ 2 the width ∆x in the systems with
mutual repression is always lower than in the systems without mutual repression. The minimal ∆x is
attained at A = 1 in all cases. The main difference is in how ∆x changes with A for A > 1: The lower
nmax, the slower the width increases with A. Thus, while lower Hill coefficients decrease the steepness of
the profiles significantly, they may prove beneficial by extending the range over which extrinsic variations
are successfully buffered without increasing intrinsic fluctuations of the boundary.

3.2 Influence of the expression level

In order to examine the influence of a changed signal-to-noise ratio on our results we performed simulations
with altered production dynamics. We did this by (1) introducing bursty production, i.e. producing 10
copies of the gap protein monomer at a time with a 10 times lower production rate (β = β0/10), and (2)
by keeping the burst size at one and changing the production rate β. To preserve the binding equilibrium
of the repression reaction at midembryo upon changing β we also changed the off-rate of the repressor
dimers by a factor fD

β , which is the ratio between the expected number of dimers at midembryo for
the altered production rate β and the corresponding value for the standard production rate β0. Note
that, since in our system the copy numbers of both monomers and dimers depend on β in a nontrivial
fashion (see section 1.4) the effective copy number increase typically does not correspond to the ratio
β/β0. Therefore fD

β > β/β0 for β > β0.

3.2.1 Bursty production has only a marginal influence on the boundary properties

In Fig. S8 we plot the standard deviation of the total Hb copy number at the boundary, the steepness
of the total Hb copy number profile at the boundary and the boundary width ∆x as a function of D for
the system with bursty production (burst size 10). There is no significant difference as compared to the
system with normal production (burst size 1, compare to Fig. S6(D) or Fig. 3 of main article). For low D
the production noise is marginally higher with bursty production, resulting in a slight increase of ∆x in
this regime; the effect of varying D, however, is much more important. This is most likely a consequence
of the fact that for the given Hill coefficient nmax = 5 promoter state fluctuations are already at a high
level due to a very broad off-time distribution (see section 3.1).
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3.2.2 Increased production rates reveal different noise scaling behavior for different regimes
of the diffusion constant

Upon increasing the production rate and consequently the total copy number of the gap proteins we may
expect a relative decrease in the output noise, but only if the latter is purely Poissonian. In our system
this corresponds to the limit of high gap protein diffusion constants. In that limit, we expect σG ∝

√
G,

where σG is the noise in the total gap gene copy number G. However, in the abscence of spatial averaging,
i.e. for the limit D → 0, non-Poissonian noise prevails and the expected scaling is σG ∝ G [3]. If the
copy number profile is scaled uniformly at each AP position x, which–to a good approximation–is the
case in our system, we expect for the scaling of the gradient at midembryo G′(xt) ∝ G(xt). The expected
scaling for the boundary width ∆x then is ∆x ∝ 1 for low diffusion constants and ∆x ∝ 1/

√
G for

high D. While the overall characteristics of the boundary are very similar to the system with β = β0, a
comparison roughly confirms the predicted scaling. Fig. S9 compares for Hb the standard deviation of
the total copy number at the boundary (S9A), the steepness at the boundary (S9B) and the resulting
boundary width (S9C) as a function of D for increased production rates β = 2β0 and β = 4β0 to the
corresponding values for the sytem with production rate β/2. Thus, the values for β = 4β0 are compared
to β = 2β0 and the values for β = 2β0 are compared to β0. Blue lines mark the expected change of the
quantities as predicted by the scaling relations, where the corresponding copy number increase is given
by the factor f2 ≡ f2β0 = 2.22 and f4 ≡ f4β0/f2β0 = 2.16. Here fβ ' fD

β is the predicted total copy
number at midembryo divided by the corresponding value for β = β0.

The plots show that while the slope ratio is roughly equal to f2 (f4) for all D both in the system with
(green) and without (red) mutual repression, the noise ratio depends on the diffusion constant and also
slightly differs for the systems with and without mutual repression. Nevertheless the predicted scaling
behavior is confirmed in both cases: in the low diffusion constant regime the noise ratio is roughly f2

(f4) and approaches
√
f2 (
√
f4) as D increases; together this leads to a boundary width ratio of one for

low D which decreases towards 1/
√
f2 (1/

√
f4) for higher D.

3.3 Activation of both gap genes by a single gradient

In the one-morphogen gradient scenario, both hb and kni are activated by the Bcd gradient. Here, kni
is activated in the same way as hb, namely by 5-step cooperative binding, but with a lower activation
threshold. This results in the induction of both genes in the anterior half of the embryo up to the posterior
Hb boundary and of kni in an additional region posterior to the Hb boundary. Given that hb represses kni
more strongly than vice versa in the double-activated bistable region, this parameter choice will result in
the formation of two neighboring domains. We chose the kni activation threshold to be lower by a factor
of 1/2, which causes an offset of its half-activation point by approximately 10 nuclei (83 µm) towards
the posterior. We varied the protein diffusion coefficient D and kR,K

off , the off-rate of the Kni repressor
dimers from the hb promoter. The rate for dissociation of the Hb dimers from the kni promoter was kept
at the standard value kR,H

off = 5.27 · 10−3 /s in all simulations.
The diffusion constant D of the gap proteins and the dissociation rate kR,K

off of Kni from the hb
promoter are indeed key parameters. On the one hand, hb must repress kni more strongly than the other
way around, because otherwise there will be only one kni domain. On the other hand, when kR,K

off is
high, then kni is only significantly expressed when D is low, because kni represses hb more weakly than
vice versa, which means that low amounts of invading Hb dimers are sufficient to shut off Kni production
almost completely; indeed, in this regime, kni has hardly any effect on the precision of the hb expression
domain. We found that when kR,H

off /kR,K
off is roughly between 0.1 and 1, both hb and kni domains are

formed robustly. In Fig. S4 we display the case for kR,H
off /kR,K

off = 1/
√

10 ≈ 1/3.
Fig. S4A shows that the maximum of the average Kni copy number is lower than that of Hb, even

though for x < 60 %EL kni is essentially fully activated by Bcd (Fig. S4B). The lower maximum is due
to the fact that hb represses kni more strongly than vice versa. Another point worthy of note is that the
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fluctuations in the Kni copy number in the Kni domain are higher than those of Hb in the Hb domain
(Fig. S4C). This is essentially due to the small width of the Kni domain: kni is either fully activated by
Bcd yet still repressed by Hb or not repressed by Hb yet stochastically activated by Bcd.

Panels D-F show, respectively, the noise in the Hb copy number at the hb expression boundary, the
steepness of this boundary, and the width of this boundary, as a function of the diffusion constant D
of the gap proteins. It is seen that the results are highly similar to those of the two-gradient motif.
The noise in the Hb copy number at the boundary is not much affected by mutual repression (panel D),
while the steepness, and consequently boundary precision, is markedly enhanced by mutual repression,
especially when the diffusion constant is small. Note that while for the two-morphogen gradient scenario
the approximation ∆x ≈ σH(xt)/|〈H(xt)〉′| is in very reasonable agreement with ∆x as measured from
the distribution of threshold crossings p(x), here the agreement is much less. This is due to sporadic
repression events in the anterior region where hb and kni are both fully activated, which leads to a long tail
of p(x) extending towards the anterior pole; while p(x) in the tail is small, the fact that the tail is long does
markedly increase the standard deviation ∆x. Given that the approximation ∆x ≈ σH(xt)/|〈H(xt)〉′|
works so well for all the other cases, we consider this approximation, which does not suffer from sporadic
but strong hb repression events in the anterior, to be more reliable. We therefore conclude that also in the
one-morphogen gradient scenario, mutual repression can enhance both the steepness and the precision of
gene-expression boundaries.
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Figure S1. Bifurcation analysis of a one dimensional mean-field model of mutually
repressing gap genes activated by morphogen gradients. Plotted are the stable (solid lines) and
unstable (dashed lines) fixed points of the copy number of Hb (colored lines) and Kni (grey lines) as a
function of the AP position x as predicted by a bifurcation analysis performed on a 1D mean-field
model in which hb and kni are activated cooperatively by their respective morphogens and mutually
repressing each other. Different colors correspond to different fixed points. The different panels show
the solutions for activator amplitudes (A) A=1, (B) A=2, (C) A=4 and (D) A=8. All other
parameters values are the standard values from Table S2. Activator concentrations at position x used in
the mean-field analysis correspond to the ones in the 2D stochastic simulations. Away from midembryo
each gap protein level has only one stable fixed point and one of the two levels is always zero. For all A
there is a region around midembryo in which the protein levels have two stable and one unstable fixed
point, implying bistability. In this region the analysis predicts bistable switching between the
high-Hb–low-Kni and the low-Hb–high-Kni state. For clarity we color-code the Hb fixed points only.
The Kni solutions are identical to the Hb solutions mirrored with respect to midembryo.
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Figure S2. Decomposition of variances at the boundary. (A) Decomposition of the total Hb
copy number variance at the average boundary position for the system with mutual repression as a
function of the gap protein diffusion constant D. Plotted are: σ2

H(xt) the total (time- and
circumference-) variance measured during runtime (RT, black), the same quantitity determined from a
set of 6400 instantaneous profiles (IP, red, 64 AP rows at 100 different time points), σ2

〈H〉φ
the variance

in time of the circumference average of H(xt, φ) (green) and σ2
H the time average of the variance of

H(xt, φ) over the circumference (blue). (B) The same as (A) for the system without mutual repression.
(C) The same variance decomposition as in (A) for the Hb boundary position xt instead of the copy
number. The black line shows the ∆x values measured as the standard deviation of the boundary
position histogram accumulated during runtime (RT), the grey dashed line the corresponding values
determined from the approximation σH(xt)/|〈H(xt)〉′|. (D) The same as in (C) for the system without
mutual repression. In both cases, the main contribution to the total boundary variance σ2

xt
comes from

σ2
xt

, implying that the blurring of the boundary is rather due to roughness than due to concerted
boundary movements.
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Figure S3. Microscopic properties of the boundary steepness. Panels (A) and (B) compare
for different gap protein diffusion constants D the average Hb profile steepness at the boundary
measured in a set of 6400 instantaneous profiles (64 AP rows at 100 different time points) to the
steepness of the (time- and circumference-) average of the Hb profile (|〈H(xt)〉′|, black) for different
numbers ν of neighboring data points used in calculating running averages over the instantaneous
profiles for the system with (A) and without (B) mutual repression. Although for increasing ν the
instantaneous profiles become less steep as a consequence of the smoothening, the values for ν = 3
indicate that the profiles at a given row and time instance are slightly steeper than the average profile.
In panels (C) and (D) we show results of the same analysis performed on the 100
circumference-averages of the instantaneous profiles, again for the system with (C) and without (D)
mutual repression. Here ν = 1 is the data obtained without calculating running averages (magenta). In
both systems the steepness of the φ-averaged profiles agrees reasonably well with the steepness of the
average profile |〈H(xt)〉′|.



16

Figure S4. The effect of mutual repression in a system where both hb and kni are
activated by the Bcd gradient. See following page for description.
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Figure S4. The effect of mutual repression in a system where both hb and kni are
activated by the Bcd gradient. (A) Time- and circumference-averaged Hb (〈H〉, solid lines) and
Kni (〈K〉, dashed lines) total copy-number profiles along the AP-axis for various Hb and Kni diffusion
constants D. (B) AP profiles of the average standard deviation of the total gap gene copy number for
Hb (σH, solid lines) and Kni (σK, dashed lines). Note that the noise in K in the Kni domain is larger
than that in H in the Hb domain. (C) AP profiles of the probabilities 〈H0

5 〉+ 〈H1
5 〉 and 〈K0

5 〉+ 〈K1
5 〉

that the hb (solid lines) and kni (dashed lines) promoters have 5 Bcd molecules bound to them,
respectively; in the absence of mutual repression between hb and kni , these profiles would directly
determine the expression of hb and kni . (D) The noise in the Hb copy number at the hb expression
boundary as a function of the Hb and Kni diffusion constant D. (E) The steepness of the hb expression
boundary as a function of the diffusion constant of the gap proteins. (F) The width ∆x of the hb
expression boundary as a function of the Hb and Kni diffusion constant. The grey line corresponds to
the approximation ∆x ≈ σH(xt)/|〈H(xt)〉′|, which we consider to be more reliable than ∆x as measured
from the distribution of threshold crossings, p(x); the latter suffers from sporadic but strong suppression
events of hb by kni in the anterior, which leads to a long tail of p(x), increasing ∆x. It is seen that
while mutual repression has hardly any effect on the noise in the copy number at the boundary, it does
markedly enhance the steepness of the boundary, and thereby its precision. The ratio of the
Hb–kni -promoter dissociation rate over the Kni–hb-promoter dissociation rate is kR,H

off /kR,K
off = 1/3.
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Figure S5. On- and off-times distributions of the hb promoter for different Hill
coefficients nmax in a nucleus at midembryo. The panels show normalized histograms of the times
spent in the producing (n = nmax) promoter state (“ON”, green) and of the times spent in the
non-producing (n < nmax) states (“OFF”, red) for (A) nmax = 2, (B) nmax = 3, (C) nmax = 4 and
(D) nmax = 5 (standard case). It can be seen that with increasing Hill coefficient nmax the off-times
distribution changes from an exponential to a non-exponential distribution with high weight on very
short off-times (implying fast returns to the producing state) and a with a long tail of long off-times.
Since the off-rate from the producing state is kept the same for all nmax the on-times distributions
remain unaltered. The on- and off-times have been determined from long time trajectories
(ttotal = 105 s) of the occupancy of the producing state with a sampling resolution of 0.5 s.
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Figure S6. Boundary characteristics for reduced Hill coefficients nmax. See following page for
description.
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Figure S6. Boundary characteristics for reduced Hill coefficients nmax. The standard
deviation of the total Hb copy number at the boundary (σH(xt), upper panels), the gradient of the
average Hb total copy number gradient at the boundary (|〈H(xt)〉′|, middle panels) and the boundary
width (∆x, lower panels) as a function of the gap protein diffusion constant D for the systems with
(green) and without (red) mutual repression and Hill coefficients (A) nmax = 2, (B) nmax = 3, (C)
nmax = 4 and (D) nmax = 5 (standard case). Grey dashed lines are values determined from the
approximation ∆x = σH(xt)/|〈H(xt)〉′|, solid lines are values calculated from the distributions of xt.
Broad dashed lines are the values for D = 0. Black dotted lines mark the D-value where the boundaries
are both steep and precise due to mutual repression.
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Figure S7. The effect of changing the activator amplitude A on the boundary precision
for reduced Hill coefficients nmax. Shown are the the boundary width ∆x with (green) and without
(red) mutual repression as a function of ∆xA, the separation between the Hb and Kni boundaries
expected in the system without mutual repression, and the corresponding activator amplitude A for Hill
coefficients (A) nmax = 2, (B) nmax = 3, (C) nmax = 4 and (D) nmax = 5 (standard case). In all
cases D = 1.0 µm2/s.
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Figure S8. The effect of bursty gap protein production on the Hb boundary precision.
The plot shows σH(xt) the standard deviation of the total Hb copy number at the boundary, the
steepness |〈H(xt)〉′| of the average total Hb copy number profile at the boundary and the boundary
width ∆x with (green) and without (red) mutual repression as a function of the gap protein diffusion
constant D for a system in which the gap proteins are produced in bursts of 10 at a time with decreased
production rate β = β0/10. The grey dashed lines are the values obtained from the approximation
∆x = σH(xt)/|〈H(xt)〉′|. Thick dashed lines are values for D = 0. Error bars were obtained from block
averages over 10 independent samples. The black dotted line marks the D-value where the boundary is
both steep and precise due to mutual repression.
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Figure S9. The effect of increased copy number on the Hb boundary precision. See
following page for description.
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Figure S9. The effect of increased copy number on the Hb boundary precision. Shown are
the value ratios of important boundary properties for production rates β > β0 as compared to β/2 for
(A) the total Hb copy number noise σH(xt) at the boundary, (B) the steepness of the average Hb
profile at xt, and (C) the resulting width ∆x with (green) and without (red) mutual repression. Solid
lines are for β = 2β0, dashed lines for β = 4β0. Blue lines depict the ratios as predicted from the
expected scaling behavior for the limits of D → 0 (upper line pairs) and D −→∞ (lower line pairs).
The steepness is expected to scale precisely with the increased copy number in both limits. Note that
the expected factor of copy number increase upon doubling β is not precisely two because of the
nontrivial dependence of the monomer-dimer equilibrium on the production rate.


	Methodic details
	Measurement of the boundary width
	Measurement of the profile steepness
	Number of cortical nuclei at cell cycle 14
	Predicted copy numbers and effective protein lifetime

	Additional analysis
	Poissonian limit with dimerization
	Bifurcation analysis
	Estimation of switching times
	Analysis of statistical properties of the boundary
	At each time instance the boundary is rather rough
	At each time instance the profiles are slightly steeper than their average


	Additional simulations
	Influence of the Hill coefficient
	Also for lower Hill coefficients mutual repression steepens profiles without corrupting boundary precision
	Lower Hill coefficients allow for stronger morphogen level variations

	Influence of the expression level
	Bursty production has only a marginal influence on the boundary properties
	Increased production rates reveal different noise scaling behavior for different regimes of the diffusion constant

	Activation of both gap genes by a single gradient


