Computing A(f) and Q;;(f)

In this section, we present the theoretical techniques that we use to compute the spike train cellular
response function A(f) and power spectrum Q;;(f) for the ELL model; these techniques are fully presented
elsewhere [1] and we refer the reader there for further details.

Consider a leaky integrate and fire neuron model driven by a combination of a weak signal s(t) and

a white noise forcing &(t):
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where p is a drift term, o is the intensity of a stochastic process, and € << o. The voltage distribution

p(V,t) associated with the Eq. 1 obeys the Fokker-Planck equation [2]:
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where j(V,t) is the probability flux. The boundary conditions for the probability distribution and flux
at threshold are p(Vy,) = 0 and j(Vyp,,t) = r(t), where r(¢) is the firing rate. Furthermore, the flux obeys
Jj(V,t) = r(t) for V € [Vye, Vi) and 0 otherwise, when the system is stationary.

For e = 0 we obtain the steady state distribution po(V') and flux jo(V) via:
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Numerically solving the above equations and using the normalization condition ff:: po(V)dV =1, we
can solve for the steady state firing rate rg.

To compute the second-order spike train statistics, we consider the time-dependent Fokker-Planck
equation in the Fourier domain:
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where P(V, f), J(V, f), and R(f) denote the Fourier transform of p(V,t), j(V,t), and r(t), respectively.
Further, R(f) is computed with initial condition V' = V,... Solving this equation yields the Fourier trans-
form of the first passage time density D(f) [1]. For the stationary case, we compute the power spectrum
using a well known relation from renewal theory relating passage time statistics to autocovariance [3]:
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where R[] denotes the real component.

Finally, we compute the cellular response A(f). We let s(¢) to provide a weak, periodic input
to the neuron. Decomposing the probability density, flux, and firing rate into steady state and modulated
components:
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and then solving the Fokker-Planck equation in the Fourier domain for the time-dependent terms, we

obtain a new set of equations:
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with boundary conditions P;(Vip, f) = 0, and importantly the flux perturbation at spike threshold:

J1(Vin, f) = A(f). (8)

These equations were solved numerically [1] obtaining a solution for the cellular response A(f).
The above theory provided the components @;;(f) and A(f) required to compute the spike count
correlation coefficient between the pair of superficial ELL neuron outputs.
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