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Computing A(f) and Qii(f)

In this section, we present the theoretical techniques that we use to compute the spike train cellular
response function A(f) and power spectrumQii(f) for the ELL model; these techniques are fully presented
elsewhere [1] and we refer the reader there for further details.

Consider a leaky integrate and fire neuron model driven by a combination of a weak signal s(t) and
a white noise forcing ξ(t):
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where µ is a drift term, σ is the intensity of a stochastic process, and ε << σ. The voltage distribution
p(V, t) associated with the Eq. 1 obeys the Fokker-Planck equation [2]:
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where j(V, t) is the probability flux. The boundary conditions for the probability distribution and flux
at threshold are p(Vth) = 0 and j(Vth, t) = r(t), where r(t) is the firing rate. Furthermore, the flux obeys
j(V, t) = r(t) for V ∈ [Vre, Vth] and 0 otherwise, when the system is stationary.

For ε = 0 we obtain the steady state distribution p0(V ) and flux j0(V ) via:
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Numerically solving the above equations and using the normalization condition
∫ V th
−∞ p0(V )dV = 1, we

can solve for the steady state firing rate r0.
To compute the second-order spike train statistics, we consider the time-dependent Fokker-Planck

equation in the Fourier domain:
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where P (V, f), J(V, f), and R(f) denote the Fourier transform of p(V, t), j(V, t), and r(t), respectively.
Further, R(f) is computed with initial condition V = Vre. Solving this equation yields the Fourier trans-
form of the first passage time density D(f) [1]. For the stationary case, we compute the power spectrum
using a well known relation from renewal theory relating passage time statistics to autocovariance [3]:
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where <[·] denotes the real component.
Finally, we compute the cellular response A(f). We let s(t) = e2πift to provide a weak, periodic input

to the neuron. Decomposing the probability density, flux, and firing rate into steady state and modulated
components:

p = p0 + p1e
2πift, j = j0 + j1e

2πift, r = r0 + r1e
2πift, (6)
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and then solving the Fokker-Planck equation in the Fourier domain for the time-dependent terms, we
obtain a new set of equations:
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with boundary conditions P1(Vth, f) = 0, and importantly the flux perturbation at spike threshold:

J1(Vth, f) = A(f). (8)

These equations were solved numerically [1] obtaining a solution for the cellular response A(f).
The above theory provided the components Qii(f) and A(f) required to compute the spike count

correlation coefficient between the pair of superficial ELL neuron outputs.
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