
Text S3. Analytical determination of ultrasensitive thresholds 

To generalize ultrasensitivity results (Figures 3 and S2) beyond the parameters used for 

stochastic simulations, we show that the steady state concentration of variables with the 

ultrasensitive switch (black lines in Figures 3 and S2) typically have the characteristic 

ultrasensitive response (i.e. the logarithmic gain of some flux or molecule, y, in response to 

changes in another flux or molecule, x, log
log 1y

x
∂
∂  ; [43]) for physiologically relevant parameters. 

 

Linear metabolic pathway 

For the linear metabolic pathway, we start with the differential equation: 
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subsumed into v1. Solving the temporal steady state for [I], 
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To see the steady-state sensitivity to changes in the ratio of A to B expression, take ˆ[ ]A  to be 

constant and find the logarithmic gain with respect to ˆ[ ]B : 
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When 1 2
ˆ ˆ[ ] [ ]v A v B≈  in the relevant parameter regime (i.e., when kdeg is small and enzyme B is 

saturated), 
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For typical conditions, the dilution rate (kdeg) is much smaller than the enzyme catalytic rate (v1), 

so that the sensitivity is greater than 1 when the production flux 1
ˆ[ ]v A  is sufficiently large 

relative to the Michaelis-Menten constant Km. 

 

Metabolic branch point 

For the metabolic branch point, we first assume for simplicity that the two enzymes at the 

branch point bind substrate at the same affinity. Then the steady state takes the form: 
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See Table S3 for definitions of the parameters). This is very similar to the steady state for 

metabolic intermediate (Equation S3.1). To see the effect of transcriptional coupling, take kin to 

be analogous to the term 1
ˆ[ ]v A  in Equation S3.1 and the term 1 2

ˆ ˆ[ ] [ ]v A v B+  analogous to 2
ˆ[ ]v B  

in Equation S3.1; we use the same sensitivity calculation as above to arrive at a sensitivity peak 

when 1 2
ˆ ˆ[ ] [ ]ink v A v B≈ + . On the other hand, if the enzymes fluctuate independently, we take the 

term 1
ˆ[ ]ink v A−  as analogous to the term 1

ˆ[ ]v A  in Equation S3.1 and 2
ˆ[ ]v B  analogous to 2

ˆ[ ]v B  

in Equation S3.1. We then find 
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By analogy to the approximation made for Equation S3.3, the sensitivity of S to B reaches a peak 

only when the term 1
ˆ[ ]v A  is small, and S may not have an ultrasensitive threshold at all in the 

uncoupled case if 1
ˆ[ ]v A  is sufficiently large. 

 

Covalent modifications and physical protein interactions 



The effects of changing protein production rates on the unbound monomer in the physical 

interaction module have been analyzed previously [32]. The covalent modification module is 

similar to the physical interaction module with an additional flux representing conversion to the 

covalently modified form of protein A. Using the mean-field model as in Table S3, with mRNA 

variables subsumed into protein concentrations tsnA mA
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A k kα =  and tsnB mB
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Buchler and Louis [32], we find 
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where ( )1
b d p degk k k kκ = + + . The ultrasensitive regime occurs where 1 p
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 as long 

as A and B have reasonable affinity for each other. To see this, take the logarithmic gain of the A 

production flux with respect to B: 
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, we have 
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For sufficiently strong binding affinity, the parameter κ is small relative to Aα  and the peak 

sensitivity can take on very high (absolute) values. In this limit, 
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