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Materials and Methods

Electrostatic folding free energy calculations

A coarse grained model for the electrostatic free energy contribution to the folding of a given protease
sequence was calculated using AGB, an implementation of the pairwise descreening Generalized Born
(GB) model that makes use of a parameter-free algorithm to take into account atomic overlaps [1].

Specifically, we computed ∆Ge = G
(f)
e − G

(u)
e , where G

(f)
e and G

(u)
e are electrostatic free energies of the

folded and unfolded states, respectively. Both G
(f)
e and G

(u)
e were obtained using

Ge ≃ GGB = ue

∑

i

q2
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Bi

+ 2ue
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qiqj

fij

+
∑

i<j

qiqj

ǫinrij

(1)

where qi is the charge of atom i, Bi is its Born radius, fij =
√

r2
ij + BiBj exp(−r2

ij/4BiBj) is the GB

distance between atoms i and j (rij is the distance between the charges), and ue = 1/2(1/ǫw − 1/ǫin)
(ǫin is the solute dielectric constant and ǫw is the solvent dielectric constant) [1]. We used the wild-

type crystal structure of HIV protease subtype B (PDB ID 1NH0) [2] to compute G
(f)
e , and a maximally

extended chain A from 1NH0 with backbone dihedral angles set to 180◦ (except for proline) and sidechain

rotamer states set to all-trans to compute G
(u)
e . For both the folded and unfolded structures, unit charges,

corresponding to a specific charge signature for the 99 residues, were placed on the most distal carbon
atoms. All other side chains atoms are neutralized. Partial charge dipoles of ±0.4e are placed on every
backbone amide and cabonyl group to preserve helix dipole effects [3].

Posing the inverse problem for the Potts model for sequence probabilities

Our Potts model for correlated electrostatic mutations deals with a reduced sequence length of 18 (from 99
amino acids) and a reduced amino acid alphabet size of 3. For length N = 18 and a Q = 3 letter alphabet
(0, +, -), there are 318 = 387, 420, 489 possible sequences or unique charge signatures. For every signature,
we wish to calculate the probability of that sequence under two models; an independent model which
preserves the database derived univariate marginals and a mean field model (Bethe approximation) which
preserves both the database derived univariate and bivariate marginals. We call this the pair correlation
model and we refer to the probabilities of a sequence under the independent and pair correlation model
as P1 and P2 respectively. P1 probabilities of individual sequences can be obtained by simply taking the
product of the observed univariate marginals at each position.

P1(A1, ..., AN ) =

N
∏

i=1

P obs
i (Ai) (2)
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where Ai = {0, +,−} is one of the three possible charges at position i and P obs
i (Ai) is the observed

univariate marginal of charge Ai at position i. All observed univariate and bivariate frequencies are
derived from the Lee database [4].

The probability of a sequence under the pair correlation model P2, on the other hand, is determined by
a model which generates sequences that preserve both the observed univariate and bivariate marginals. In
order to do so, we fit the sequence signature probabilities to a 3-state Potts model where the Hamiltonian,
H is described by field and coupling parameters, which reflect the mutation frequency at a site and the
strength of the statistical coupling between two sites respectively.

P2(A1, ..., AN ) =
1

Z
exp[H(A1, ..., AN )] (3)

where P2(A1, ..., AN ) is the probability of a sequence of length N consisting of charges Ai at position i
which preserves the univariate and bivariate marginals. The Hamiltonian can be defined as

H(A1, ..., AN ) =
∑

i

λi(Ai) −
∑

i<j

λij(Ai, Aj) (4)

where λi(Ai) is the field at position i for charge Ai, λij(Ai, Aj) is the coupling between charges Ai and
Aj at positions i and j and Z is the partition function.

Z =
∑

Ai

exp[H(A1, ..., AN )] (5)

This model is the maximum entropy solution to the probability distribution that matches the single-point
and double-point correlations [5]. Note that if there were two possible states at each site instead of three,
this Potts model would be equivalent to the famous Ising model, which is widely applied in the study of
spin glass systems in statistical physics.

For a system of 18 positions and 3 states, 18 × 3 = 54 λi(Ai) and
(

18
2

)

× 32 = 1377 λij(Ai, Aj)
parameters need to be determined to accurately describe the Hamiltonian which preserves the observed
marginals. But the paramaters are not independent as we can apply conditions known as gauge con-
staints which connect the parameters [6]. For each position

∑

Ai
λi(Ai) = 0 and for each pair of positions

∑

Ai
λij(Ai, Aj) = 0. This results in two free field parameters per position and four free coupling para-

maters for every pair of positions. In this work, following Weigt et al. [6], we have chosen the free
parameters so as to maximize the fields and minimize the couplings, on average. In a future communi-
cation, we will investigate how the choice of the free parameters affects the information carried by the
couplings about spatial proximity.

This inverse problem of determining the fields and couplings, given the univariate and bivariate
marginals, is computationally challenging [6]. This problem has been described in the literature as
the inverse pairwise Ising problem (for two states) and it is computationally expensive because exact
methods to determine the marginals from an initial set of Hamiltonian parameters are slow and therefore
iterative procedures to search for the field and coupling parameters for many positions and more than
two states is unfeasible. Our own previously described method of fitting pair marginals using iterative
proportional fitting (IPF) of log-linear model parameters is slow and may not converge within a desired
time frame for the problem at hand [7]. Other proposed methods such as Monte Carlo sampling have been
applied on Ising models with a few sites, but may require exponential computational time to converge [8].
The approach we have taken involves iterative inference on a probabilistic graphical model using belief
propagation described by Weigt et al. 2009 [6,9]. The difference between our approach and the approach
taken by Weigt and coworkers is that while converging the bivariate marginals, we use a mean field
model which includes pair correlations in the Bethe approximation [10]. Applying the Bethe mean field
appoximation consistently is just as accurate as using the fluctuation dissipation approach taken by Weigt
and coworkers [6, 9]. We will compare the two approaches in a future communication.
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Outline of the algorithm

The algorithm iteratively converges upon the field and coupling parameters using gradient descent. The
outline of the algorithm is as follows.

1. For a given set of field and coupling parameters, determine the corresponding univariate and
bivariate marginals using Belief Propagation and the Bethe mean field approximation.

2. Compare these computed marginals to the observed marginals and update the field and coupling
parameters.

3. Repeat steps 1 and 2 until the Bethe mean field approximated univariate and bivariate marginals
determined from the updated fields and couplings converge to their observed values from the sequence
alignment.

Belief propagation

Belief Propagation (BP) or the Sum-Product algorithm is an iterative procedure applied to efficiently
calculate all the marginals in a tree-like graph [11]. It consists of leaf nodes passing messages to their
parents, which in turn process these messages and pass them onwards towards the root. The root then
sends messages back to its children nodes and so on until the messages eventually reach the leaf nodes.
At this point, for acyclic graphs, the messages will converge [12, 13]. For cyclic graphs, this method is
approximate but may converge after several cycles of message passing [14–16].

The self-consistent belief propagation equations we have implemented in this paper follow the approach
of Weigt et al, 2009 [6]. The probability distribution of the pair correlation model P2 is given by Equation
3. For this distribution, the corresponding BP message update rule is

Pi→j(Ai) ∽ eλi(Ai)
∏

k 6=i,j

[
∑

Ak

e−λik(Ai,Ak)Pk→i(Ak)] (6)

where Pi→j(Ai) is the local message passed from node i to node j. This message is a function of the
field at i and the product of all incoming messages from the neighbors of i, not including j. The BP
propagation messages are passed locally between nodes with random initial values for the messages.
Updates are made and the process is repeated until the messages converge. The proportionality constant
is such that the messages at a site sum to 1. Once the messages have converged, marginals are evaluated
by taking the product of the field at a site with all the incoming messages to that site

Pi(Ai) ∽ eλi(Ai)
∏

k 6=i

[
∑

Ak

e−λik(Ai,Ak)Pk→i(Ak)] (7)

Since our implementation of the network is a completely connected undirected graph, with all nodes
interconnected to one another, belief propagation is not guaranteed to converge [12,16,17]. However belief
propagation on cyclic graphs, called loopy belief propagation, may closely approximate the solutions after
several iterations [14–16].

For our problem, the marginals are known quantities and it is the fields and couplings that we wish to
find. Therefore, we actually have an inverse problem; we need to find the fields and couplings given the
marginals. This can be achieved by taking the ratios of Equations 6 and 7, a trick described by Weigt et
al. 2009 [6, 9], thus allowing us to write the message from i to j in terms of the known marginal at i.

Pi→j(Ai)
Pi(Ai)

=
eλi(Ai)

Q

k 6=i,j [
P

Ak
e−λki(Ak,Ai)Pk→i(Ak)]

eλi(Ai)
Q

k 6=i[
P

Ak
e−λki(Ak,Ai)Pk→i(Ak)]

Pi→j(Ai) = Pi(Ai)
P

Aj
e
−λij (Ai,Aj)

Pj→i(Aj)]

(8)

Equation 8 can be used to force the univariate marginals estimated by BP to be the observed marginals.
As a result, the field parameters never require updating; once the messages converge, the fields can be
explicitly calculated using Equation 7. In other words, the univariate marginals are always conserved.
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On the other hand, the predicted bivariate marginals need to match the observed bivariate marginals.
This can be approximated by the following equation:

P bethe
ij (Ai, Aj) =

exp[λij(Ai, Aj)]Pi→j(Ai)Pj→i(Aj)

Z
(9)

where Ai and Aj are the mutations at positions i and j, λij(Ai, Aj) is the statistical coupling parameter
between i and j, Pi→j(Ai) is the message passed from i to j, Pj→i(Aj) is the message passed from j
to i and Z is the partition function. This equation has been proven by Yedidia and coworkers to be
mathematically equivalent to the Bethe approximation, a mean field model, and is what we apply in our
code to approximate the bivariate marginals in our system [12,15, 17].

Algorithm in detail

1. Initialization: Set all λij(Ai, Aj) = 0 and all λi(Ai) = ci + lnPi(Ai), where ci is a normalization
constant for the gauge constraints which were described earlier.

2. Update messages using Equation 8 for all pairs of residues iteratively until the belief propagation
messages converge.

3. Update bivariate marginals P bethe
ij (Ai, Aj) using the Bethe approximation (Equation 9).

4. Compare P bethe
ij (Ai, Aj) to P obs

ij (Ai, Aj), which is the database derived frequency of a double
mutation. If the couplings have converged, then stop. If the couplings have not converged by a desired
amount, update λij(Ai, Aj) as follows

△λij(Ai, Aj) = −ǫ[(P obs
ij (Ai, Aj) − P bethe

ij (Ai, Aj)] (10)

where ǫ is the gradient descent step size, set to 0.0001, and repeat steps 2, 3 and 4 until the pair
probabilities converge.

Sampling sequences from probability distributions

Several tests of the finite size effects require us to sample sequences drawn from the probability distribution
described by either the independent model or the pair correlation model. To randomly sample sequences
from these models, we make use of the inverse transform sampling algorithm. In the first step of this
algorithm, a cumulative distribution function (CDF) is constructed from the modelled probabilities for
a subset of sequences, for example all sequences with 6 mutations. Using subsets allows us to reduce
the universe of available sequences and enables faster sampling. Random floating point values between
0 and 1, from a random number generator, are then used to inversely map the CDF back to a specific,
randomly picked sequence. Quantile functions for this inverse mapping are saved in a lookup table to
allow for efficient sampling. The samples drawn are independent and uncorrelated; hence no burn-in time
is required. In effect, we use a Gibbs sampler, i.e. sequences are drawn according to their probabilities
under the model and all draws are accepted.

Associating mutation patterns with protease inhibitors

A drug-annotated sequence alignment consisting of 38,420 HIV protease isolates of multiple subtypes was
downloaded from the Stanford HIV database on April 7th, 2010 [18]. This dataset was used determine
which inhibitors are significantly associated with specific electrostatic mutations patterns. Since multiple
isolates in this database are associated with a single patient, only the most recent subtype B isolate
for each patient was extracted, leaving 13,286 protease sequences. Upon examination, many sequences
come from patients undergoing antiretroviral therapy with one or more protease inhibitors. However, the
majority of sequences come from patients who have not been exposed to any drugs. The difference in the
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proportion of sequences with a particular mutation pattern in the drug-naive cohort as compared to the
proportion of sequences with the same mutation pattern but exposed to a specific drug cocktail, can be
used as a measure of association between that drug cocktail and the mutation pattern.

To do find significant associations, the sequence alignment was converted into strings of charge states
“n”, “-” and “+” as described above, and used to calculate pdrug, the proportion of sequences with a
unique mutation pattern and exposed to a particular set of drugs, and pnaive, the proportion of sequences
with the same mutation pattern but exposed to no drugs. A pooled sample proportion t-test was then
performed to determine the significance of association for a drug combination with a group of mutations,
with the z-score for the null hypothesis of pdrug − pnaive = 0 given by

z =
pdrug − pnaive

SE
.

The standard error, SE is
SE =

√

p(1 − p)(1/n1 + 1/n2),

where p = (pdrug ndrug + pnaive nnaive)/(ndrug + nnaive) is the pooled sample proportion, ndrug is the
number of sequences exposed to the particular combination of drugs, and nnaive is the number of sequences
not exposed to drugs.
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Figure Legends

Figure S1. Contribution of individual sequences to the average electrostatic folding
energy. Each contribution is given by ∆GeP , where ∆Ge is the electrostatic folding energy of a given
sequence (see Methods) and P is its probabilit y under the independent or pair correlation model
conditional upon the number of mutations. Red: mutation patterns observed in the Lee database [4],
black: mutation patterns not observed in the Lee database. Several outliers are labeled explicitly by
their mutation pattern. Mutations are represented as aNb, where N is the residue number and a and b
are one of the 3 charged states (+, -, n). The straight line on each diagram is a plot of x = y .
Sequences below this line have P1 < P2, resulting in ∆GeP1 > ∆GeP2 (∆Ge < 0). For these sequences,
the electrostatic stabilization is greater under the pair correlation model than under the independent m
odel.
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Figure S2. Comparison of sequence probabilities under the independent and pair
correlation model. The probability of a given sequen ce under the pair correlation model, P2, is
plotted against the probability of the same sequence under the independent mo del, P1, for all
sequences with 1 through 6 electrostatic mutations. Both independent and pair correlation model
probabil ities are renormalized and are conditional upon the number of mutations. Red: mutation
patterns observed in the Lee database citeChen:2004ao, black: mutation patterns not observed in the
Lee database. Several outliers are labeled explicitly by their mutation pattern. Mutations are
represented as aNb, where N is the residue number and a and b are one of the 3 cha rged states (+,-,
n). The straight line on each diagram is a plot of x = y. Sequences below this line have P1 < P2.
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Figure S3. Comparison between the observed and predicted mutivariate marginals for 2, 3
and 4 mutations. Predicted marginals determined using belief propagation in the Bethe
approximation are plotted against the observed marginals for sets of 2, 3, and 4 mutations. The
correlation between P bethe

ij and P obs
ij is 1.00. The correlation between P bethe

ijk and P obs
ijk is 0.98. The

correlation between P bethe
ijkl and P obs

ijkl is 0.90.
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Figure S4. Distribution of pair correlation model probabilities for sequences in the tail of
the Lee distribution that are observed (red) or unobserved (blue) in the Stanford
database. The histogram in red is the distribution of pair correlation model probabilities for sequences
found in the tail of the Lee database that also exist in the Stanford database. The histogram in blue is
the distribution of pair correlation model probabilities for sequences that are not observed in the
Stanford database. The null hypothesis which states that the means of these two distributions are
equal, has a low p-value of < 10−4, indicating that the null hypothesis must be rejected. Therefore, the
difference between the means of these two distributions is statistically significant.
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Figure S5. Distribution of the number of sampled sequences not observed in the Lee
database. 13,286 sequences, corresponding to the size of the Stanford database, were randomly
sampled from the probability distribution described by the pair correlation model. The distribution of
the number of sequences not observed in the Lee database for each of the 1,000 simulations, is plotted
as a frequency distribution. The sample average for this distribution is 124.2 and the standard
deviation is 10.6. The actual number of sequences in the Stanford database that are not observed in the
Lee database is 128 (plotted as a straight red line), a number which lies well within 1 standard
deviation of the sample mean.
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Figure S6. Distribution of the number of unique sequences for sample sizes equal to the
size of Stanford and Lee databases. 13,286 and 45,161 sequences, corresponding to the sizes of the
Stanford and Lee databases, were each randomly sampled from the probability distribution described
by the pair correlation model. The distribution of the number of unique sequences for 1,000 simulations
for both sampling distributions is plotted as a histogram. The sample average for the Stanford-sized
sample distribution is 452.9 and the standard deviation is 14.3. The sample average for the Lee-sized
sample distribution is 862.1 and the standard deviation is 18.7. The number of unique sequences in the
Stanford database is 431 while the number of unique sequences in the Lee database is 828, both of
which lie within 1.4 standard deviations of their respective sample means.
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Figure S7. Structure of HIV protease subtype B and the spatial distances between highly
correlated pairs. The backbone structure of HIV protease subtype B (PDB ID: 1NH0) is depicted in
ribbon format. Similar to Figure 1, the 18 electrostatically active residues are highlighted. Residue
positions which have a predominantly negatively charged non-neutral residue in the sequence database
are depicted in red. Residues which have a predominantly positively charged non-neutral residue in the
database are depicted in blue. Addititionally, the distances between the top 5 most correlated pairs of
residues are depicted as dashed lines. The pairs are 30–88, 20–35, 16–63, 18–20 and 20–92.
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Tables

Table S1. Electrostatic mutation patterns with the highest probabilities under the pair
correlation model and the drug combinations they are most strongly associated with.
Shown are the top 5 patterns with 2, 3 and 4 electrostatic mutations for which the pair correlation
model predicted probability, P2, is the highest, together with the drug combination they are most
significantly associated with. Drug combinations are listed in order of treatment. The test of statistical
association between drugs and electrostatic mutation patterns is based on the the Stanford
database [18] (SI Methods). The proportion of sequences with the mutation pattern and exposed to a
specific drug was compared to the proportion of sequences with the same mutation pattern but exposed
to no drugs. The null hypothesis is that that the two proportions are equal, and the p-value to test the
significance of this hypothesis is listed alongside the drug combination. NFV: Nelfinavir, IDV:
Indinavir, SQV: Saquinavir, RTV: Ritonavir, APV: Amprenavir. The acronym PI, protease inhibitor, is
used in the Stanford database when the drug was unknown. The D30N, N37D, Q61E, N88D pattern is
not significantly associated with any drug combination.

Pattern P2 Drugs p-value
2 electrostatic mutations

D30N, N88D 2.7 × 10−2 NFV < 10−7

K20I, N37D 6.1 × 10−3 IDV,NFV < 10−7

N37D, H69Q 4.6 × 10−3 PI < 10−3

N37D, Q61E 2.9 × 10−3 RTV,SQV,PI < 10−3

Q7E, N37D 2.1 × 10−3 RTV,PI < 10−7

3 electrostatic mutations
D30N, N37D, N88D 4.7 × 10−3 IDV,NFV,RTV < 10−7

K20I, D30N, N88D 3.1 × 10−3 IDV,NFV,PI < 10−7

D30N, H69Q, N88D 2.7 × 10−3 IDV,NFV,RTV,SQV < 10−7

D30N, Q61E, N88D 8.1 × 10−4 NFV < 10−7

Q7E, D30N, N88D 7.4 × 10−3 NFV < 10−6

4 electrostatic mutations
K20I, D30N, N37D, N88D 5.5 × 10−4 IDV,NFV < 10−7

D30N, N37D, H69Q, N88D 3.0 × 10−4 APV,IDV,NFV,RTV,SQV < 10−7

K20I, D30N, H69Q, N88D 2.4 × 10−4 NFV,RTV,PI < 10−7

K20I, D30N, E35Q, N88D 2.2 × 10−4 IDV,NFV < 10−7

D30N, N37D, Q61E, N88D 1.5 × 10−4 – –
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Table S2. Prediction of novel electrostatic mutation patterns. Shown are 25 electrostatic
mutation patterns with the highest probabilities under the pair correlation model that are not observed
in the Lee database [4]. P2 is the probability of the sequence under the pair correlation model, NLEE is
the number of times the mutation pattern was found in the Lee database [4], NST is the number of times
the mutation pattern was found in the Stanford database [18]. If the sequence is found in the Stanford
database, it may be significantly associated with specific drugs combinations. The drug combinations
listed are in order of treatment and have strong p-values of association with the mutation pattern. The
test of statistical association between drugs and electrostatic mutation patterns is described in SI
Methods. NFV: Nelfinavir, IDV: Indinavir, SQV: Saquinavir, RTV: Ritonavir, APV: Amprenavir. The
acronym PI, protease inhibitor, is used in the Stanford database when the drug was unknown.

Pattern P2 NLEE NST Drugs p-value
H69Q,I72R 1.8 × 10−4 0 11 APV-IDV-NFV-RTV < 10−7

K20I,N37D,Q58E,Q92K 8.3 × 10−5 0 5 PI < 10−5

K20I,E34Q,Q58E 7.4 × 10−5 0 16 PI < 10−7

K20I,L63H,K70E 6.0 × 10−5 0 4 ATV < 10−7

D30N,H69Q,I72E,N88D 5.3 × 10−5 0 0 - -
K20I,D30N,K70E,N88D 5.0 × 10−5 0 1 PI 4.3 × 10−2

Q7E,N37D,Q58E 4.6 × 10−5 0 0 - -
D30N,I72R,N88D 4.4 × 10−5 0 0 - -

Q18H,K43T 4.4 × 10−5 0 25 LPV-NFV-SQV < 10−7

D30N,L63H,H69Q,N88D 4.2 × 10−5 0 0 - -
G16E,I72R 4.1 × 10−5 0 3 - -
E34Q,K70E 4.1 × 10−5 0 4 PI 5.0 × 10−5

G16E,K20I,N37K 3.8 × 10−5 0 2 PI 4.1 × 10−3

Q18H,D30N,N37D,N88D 3.6 × 10−5 0 2 NFV-PI < 10−7

K20I,D30N,E35Q 3.6 × 10−5 0 6 NFV-RTV < 10−7

K20I,K70E,Q92K 3.6 × 10−5 0 0 - -
T12K,K70T 3.5 × 10−5 0 18 NFV-PI 7.2 × 10−4

N37K,K43T,Q61E 3.4 × 10−5 0 0 - -
Q18H,K20I,N88D 3.4 × 10−5 0 3 LPV-RTV-SQV < 10−7

E35Q,Q58E 3.4 × 10−5 0 21 IDV-LPV-NFV-PI < 10−7

N37D,Q58E,I72E 3.4 × 10−5 0 3 APV-IDV-NFV-RTV-SQV < 10−7

T12K,N37D,H69Q 3.4 × 10−5 0 5 - -
D30N,N37D,L63H,N88D 3.4 × 10−5 0 1 PI 0.04

G16E,K70E 3.4 × 10−5 0 6 NFV 4.8 × 10−4

K20I,D30N,N37D,N88D,Q92K 3.4 × 10−5 0 1 PI 0.04
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Table S3. The most statistically deviated pairs of mutations. The 10 most statistically
deviated double mutations in the Lee database relative to the independent model. The measure used to

test for deviation is dev(i, j) =
(Pij(M,M)−Pi(M)Pj(M))2

Pij(M,M) where Pij(M, M) is the joint probability of a

double mutation at positions i and j while Pi(M) is the univariate marginal of a mutation at position i.
The double mutant charge states and the distance between charges is also listed.

Residues Charges Distance Enhanced or Suppressed Deviation
30–88 0,- 6 enhanced 1910
20–35 0,0 11 enhanced 126
16–63 -,+ 8 enhanced 118
18–20 +,0 5 enhanced 91
20–92 0,+ 21 enhanced 75
63–70 +,- 7 enhanced 56
20–88 0,- 18 enhanced 53
20–58 0,- 20 enhanced 53
16–37 -,- 9 suppressed 48
63–70 +,0 7 enhanced 46


