Model Comparison

Logically, a statistical comparison (i.e., a t-test) of the best-fitted line vs. a line of unity slope does not answer the question of whether results conform to the Bayesian hypothesis, because the parameter space of the Bayesian hypothesis (i.e., unity slope) is infinitesimal compared to the parameter space of the ‘alternative’ hypothesis (all non-unity slopes and nonlinear functional relationships). To correctly examine the Bayesian hypothesis, we must account for this discrepancy in the sizes of the two hypothesis spaces in comparing the two models.

As we have done previously


[1,2,3,4] ADDIN EN.CITE , we perform the desired model comparison by computing a log-odds ratio based on the likelihood of each model:
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and
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Note that both model likelihoods are marginal probabilities, marginalizing over all model parameters (here 
[image: image3.wmf], the possible slope values, and 
[image: image4.wmf], an early-noise parameter defining the spread of observed average excursions from the fitted line – see below), where the probability of observing the ijth datum (corresponding to the ith obstacle and jth value condition):
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and the model variable (
[image: image6.wmf] = 
[image: image7.wmf] or 
[image: image8.wmf]) simply restricts the possible values of 
[image: image9.wmf], such that under 
[image: image10.wmf], 
[image: image11.wmf], and under 
[image: image12.wmf], 
[image: image13.wmf]. Further, we assume Weber noise, such that the standard deviation 
[image: image14.wmf] describing expected deviations from the model line at the ijth predicted shift, 
[image: image15.wmf], is proportional to 
[image: image16.wmf]: 
[image: image17.wmf]. The leading term, 
[image: image18.wmf], is a constant early-noise component. 

Having no initial preference for either model, 
[image: image19.wmf], the final log-odds ratio favoring the Bayesian model is obtained by combining (1) and (2):
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which provides a measure of evidence [5] for the optimal model, expressed in dB.
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