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In this Supplementary Material we present further results for TD-learning and elaborate on its failure
to learn mixed Nash equilibria.

TD successfully learns a pure Nash equilibrium

TD-learning of blackjack yields similar results as spike-based population reinforcement learning (pRL).
In Fig. S1 results for both algorithms are shown. TD learns the optimal deterministic decisions, even in
the non-Markovian case of two TD-learners playing against each other (Fig. S1A).

TD fails to learn a mixed Nash equilibrium

The resulting asymptotic choice behavior of TD-learning in the inspector game depends on the inverse
temperature in the softmax action selection. The Nash equilibrium is never reached, though for one
TD-learner playing against the algorithm one can find an inverse temperature where the behavior is at
least close to Nash (Fig. S2A). For two TD-learners (Fig. S2B) we calculated the asymptotic behavior
by demanding that the average value update equals zero, i.e. the Q-values equal the expected payoffs.
Using softmax action selection and consulting the payoff table Tab.2 this yields the following system of
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Figure S1. Playing blackjack yields similar results for pRL and TD. (A) Average strategy
(±SEM) after 10 000 games where the gambler (blue) is a neural net (small dark circles) or TD-learner
(large light circles) as well as the croupier (black). The vertical dotted lines left of s1 = 15 and s2 = 16
show the separation line of drawing/not drawing another card for the optimal Nash strategy pair. (B)
Average strategy (±SEM) after 10 000 games for a neural net (small dark circles) or TD-learner (large
light circles) as gambler playing against a croupier that follows a given strategy s2 = 15 (blue), 16 (red)
or 17 (green). The colored dotted lines left of s1 = 12, 15, 16 show the separation line of drawing/not
drawing another card for the optimal strategy given that the croupier stops drawing at s2 = 17, 16, 15
(from left to right). (C) Average reward (±SEM) of the gambler for the scenario described in (B). The
colored dotted lines show the maximal reachable average reward.
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Figure S2. TD-learning in the inspector game strongly depends on the inverse

temperature and shows oscillations. (A) Average choice behavior for TD vs computer algorithm
over 5 000 trials as function of the inverse temperature β for inspection cost i = 0.1 (blue), 0.3 (red), 0.5
(green), 0.7 (purple) and 0.9 (cyan). The colored dashed lines indicate the Nash equilibrium, the black
dashed line the value β = 50 chosen in Fig. 3 of the main text to best fit the experiments. (B) Average
choice behavior for TD vs TD. The colored dashed lines show the solution of the equation system
obtained when the average TD-update equals zero. (C) Single run shirk rate (green) and inspect rate
(red) as function of time for TD vs TD. (D) Q-value of shirking (solid green), working (dashed green),
inspecting (solid red) and not inspecting (dashed red) as function of time for the same single run as in
(C). In (A) and (B) the same value α = 0.004 as in the main text was used, whereas in (C) and (D) the
parameters were set to α = 0.2 and β = 10 in order to demonstrate the oscillatory behavior of
TD-learning. With the values used in the main text the period of the oscillations would exceed
reasonable simulation times.
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equations:

ps =
eβQs

eβQs + eβQw
=

1

1 + eβ(Qw−Qs)
(S1)

pi =
eβQi

eβQi + eβQn
=

1

1 + eβ(Qi−Qn)
(S2)

Qs = 1− pi (S3)

Qw = 0.5 (S4)

Qi = (2− i)(1− ps) + (1− i)ps (S5)

Qn = 2(1− ps) (S6)

where we introduced the notations ps = p(shirk), pi = p(inspect), Qs = Q(shirk), Qw = Q(work),
Qi = Q(inspect) and Qn = Q(don’t inspect). Given the inspection costs i and some inverse temperature
β, one can plug in the Q-values (Eqs. (S3)–(S6)) into Eqs. (S1) and (S2) and solve for ps and pi. It turns
out that, unless i = 0.5, the Nash equilibrium ps = i and pi = 0.5 is never a solution of this system for
any β. Hence, TD learning can never find the Nash equilibrium.

We numerically solved the above system for different i and β and plotted ps as a function of β for
different values of i (Fig. S2B). For increasing values of β the shirk probability ps comes closer to the
Nash value ps = i. But for large β’s slightly imprecise estimates of the Q-values will push the shirk
and inspection probabilities to either 0 or 1, as can be seen from the very right of Eqs. (S1) and (S2).
In numerical simulations this is expressed by the oscillations found in the action rates and the Q-values
(Fig. S2C,D). There are long phases were the employee nearly always works and the employer inspects.
Given that the employee shirks rarely, choosing to not inspect would actually yield a higher payoff for
the employer, but the value of this action is still low and only updated in exploratory steps. Finally
it surpasses the value of inspection and there is a phase were the employer does not inspect, which is
realized after some exploratory steps by the employee who starts shirking. This leads to a drastic change
in the employer’s payoff and the employer’s Q-values drop quickly to a low level. The employer inspects
more forcing the employee to work. When the employee works again the payoff of the employer increases
which he attributes to his inspection. The Q-value for inspection increases rapidly while the option to
not inspect is rarely taken and its Q-value remains low, thus the cycle repeats. The period of the cycle
is determined by how often exploratory steps are taken and due to the softmax action selection grows
exponentially with the inverse temperature.


