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Here we show how the plasticity rule presented in the main text is based on a gradient ascent procedure.
First, a formula is derived for the gradient of the probability of taking a behavioral decision with respect
to synaptic strength of the population neurons. Finally, we show that the plasticity rule presented in the
main text performs stochastic gradient ascent in the expected reward. The derivation is analog to [7],
but without delayed reward.

Gradient for the behavioral decision

Let X be the spike pattern presented to the population neurons and W the matrix of their synaptic
strength. The probability PW(D) of responding with decision D to the stimulus X is

PW(D) =

∫

dY P (D|A(Y))
N
∏

ν=1

PWν (Y ν) , (S7)

where we suppressed the conditioning on X. To lighten the notation further, we focus on calculating
the gradient of PW(D|X) only with respect to the strength of one of the synapses (the expressions for
the other synapses being entirely analogous). Let w denote the strength of the first synapse of the first
population neuron and let Y = Y 1 the postsynaptic spike train produced by this neuron. To isolate the
contribution of the first neuron we decompose the activity A(Y) as

A(Y) = 1√
N
c(Y ) +A\(Y 2, . . . , Y N ) with A\ =

1√
N

N
∑

ν=2

c(Y ν) .

Plugging this into (S7) we can calculate the derivative of PW(D) with respect to the single weight w
performed in the Supplementary Materials of [7]. Changing the matrix index of PW(D) to w we obtain

∂
∂wPw(D) =

∫

dY dA\Pw(D,A\, Y ) 1√
N

(

∂
∂A lnP (D|A)

)

c(Y ) ∂
∂w lnPw(Y ) . (S8)

Gradient of the expected reward

Since we consider immediate reward application without delay (unlike in [7]), reward does only depend
on the decisions D1 and D2 of both opposing agents in the current trial. We assume that the first agent
is a population of neurons, whereas the decision making process of the second agent remains unspecified,
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leaving the formalism general. The derivative of the first agent’s expected reward 〈R1〉 in that trial is

∂
∂w 〈R1〉 = ∂

∂w

∑

D1,D2

Pw(D1, D2)R(D1, D2)

=
∑

D1,D2

P (D2|D1)R(D1, D2)
∂
∂wPw(D1)

=
∑

D1,D2

P (D2|D1)
(

R(D1, D2)− R̄
)

∂
∂wPw(D1) . (S9)

In the last line we subtracted a term equaling zero for a reward baseline R̄ that is conditionally inde-
pendent of the current decisions D1 and D2, given the weights and the stimulus [51]. The choice of an
adaptive estimate R̄ of upcoming reinforcement based on past experience is known as reinforcement com-
parison [2]. The common approach we follow to compute R̄ is to use the exponential averaging scheme.
Formally, we assume that the probability distribution of the second agent’s decisions conditioned on D1,
P (D2|D1), is stationary. Plugging (S8) into (S9) yields

∂
∂w 〈R〉 =

∑

D1,D2

∫

dY dA\ Pw,t(D2, D1, A
\, Y )

×
(

R(D1, D2)− R̄
)

1√
N

(

∂
∂A lnP (D1|A)

)

c(Y ) ∂
∂w lnPw(Y ) (S10)

The first line is just the averaging operator. We can now compare the terms in the second line to the
weight update (1),

∆w = RewDec cE , (S11)

proposed in the main text. The first term corresponds to the reward signal Rew = η(R − R̄) given by
Eq.(5). The derivative in the second term yields for the logistic function P (D|A) = 1/(1 + exp(−DA))
in Eq.(4) the decision feedback Dec = D/(1 + exp(DA)) given by Eq.(6). The last term has already
been introduced as eligibility trace E in Eq.(8). If we choose a small learning rate, the average over
the decisions D1, D2, the postsynaptic spike train Y and the activity of the other neurons A\ can be
replaced by a time average obtained by sampling these quantities. The corresponding online learning rule
(1,S11) therefore results from dropping the averaging. While the transition from batch to online learning
requires a small learning rate for the neuronal population even in a stationary environment, here further
the learning rate of the second agent has to be small too, i.e. P (D2|D1) changes slowly in time. On the
other side the learning rate should not be too small in order to be able to react to changes in the dynamic
environment.


