Spike-based decision learning of Nash equilibria in two-player games.
 Text S3: The Roth-Erev models are no gradient procedures
 Johannes Friedrich ${ }^{1}$, Walter Senn ${ }^{1, *}$
 1 Department of Physiology and Center for Cognition, Learning and Memory, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland
 * E-mail: senn@pyl.unibe.ch

In this Supplementary Material we show that the Roth-Erev models [17] do not update the propensities in the gradient direction of the reward. For convenience we restate the update of the propensities for the 3-parameter model of Erev an Roth (ER3),

$$
\begin{equation*}
q_{i} \leftarrow(1-\phi) q_{i}+R_{k}(1-\epsilon) \delta_{i k}+R_{k} \epsilon\left(1-\delta_{i k}\right) . \tag{S12}
\end{equation*}
$$

Remember that the choice probabilities are set to $p_{i}=q_{i} / \sum_{l} q_{l}$. The one parameter model (ER1) is just a special case thereof with $\epsilon=\phi=0$.

In a stochastic gradient procedure the average propensity change is proportional to the gradient of the expected reward. The latter is, suppressing the index n of the player, $\frac{\partial}{\partial q_{i}}\langle R\rangle=\sum_{k} p_{k} R_{k} \frac{\partial}{\partial q_{i}} \ln p_{k}$ where the last term evaluates to $\frac{\partial}{\partial q_{i}} \ln p_{k}=\frac{\delta_{i k}}{q_{k}}-\frac{1}{\sum_{l} q_{l}}$. The ensuing update rule is

$$
\begin{equation*}
q_{i} \leftarrow q_{i}+\eta R_{k}\left(\frac{\delta_{i k}}{q_{k}}-\frac{1}{\sum_{l} q_{l}}\right), \tag{S13}
\end{equation*}
$$

where the positive parameter η is the learning rate. The update differs from the update of RE3 (S12) for any choice of parameters.

To conclude already that RE3 is not a policy gradient procedure would be one step too fast. There are many different estimates for the reward gradient, $R_{k}\left(\frac{\delta_{i k}}{q_{k}}-\frac{1}{\sum_{l} q_{l}}\right)$ is just one of them and maybe RE3 uses another one. We have to consider whether the average updates are equal. For the gradient procedure we obtain from averaging across the choice options $k=1,2$,

$$
\begin{equation*}
\left\langle\Delta q_{i}^{g r a d}\right\rangle=\eta \frac{\partial}{\partial q_{i}}\langle R\rangle=\eta\left(\frac{p_{i} R_{i}}{q_{i}}-\frac{\langle R\rangle}{\sum_{l} q_{l}}\right)=\frac{\eta}{\sum_{l} q_{l}}\left(R_{i}\left(1-p_{i}\right)-p_{j} R_{j}\right), \tag{S14}
\end{equation*}
$$

where i is one and j the other option. In contrast, for RE3 we obtain

$$
\begin{equation*}
\left\langle\Delta q_{i}^{R E}\right\rangle=-\phi q_{i}+p_{i} R_{i}(1-\epsilon)+p_{j} R_{j} \epsilon \tag{S15}
\end{equation*}
$$

The average propensity update $\left\langle\Delta q_{i}^{R E}\right\rangle$ (S15) is never equal to $\left\langle\Delta q_{i}^{g r a d}\right\rangle$ (S14) for any parameter setting, hence the rule does not perform (stochastic) gradient ascent in the expected reward.

