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1. Instantaneous phase response curves (iPRCs) 

The network of   connected oscillator cells in our model can be described by the generalized 

ordinary differential equation: 

 ̇      .           (1) 

If the coupling between the cells is strong enough, this equation possesses a limit cycle 

solution               with the period  . A light pulse subjected to    of the oscillator 

network along a specific dimension d can be described as a perturbation of the above 

equation: 

 ̇             ,          (2) 

where   is a diagonal matrix that determines which oscillators (and oscillator dimension) are 

subjected to the external light-input      with amplitude  . If the external perturbation 

amplitude   is small compared to the amplitude of the limit cycle, it is valid to reduce the 

dynamics to the perturbation of the phase of the limit cycle solution [1]. The equation 

describing phase dynamics is given by: 

 ̇     ∑           
                (3) 

The function                  describes the instantaneous phase response along the 

perturbed dimension d of the jth oscillator [2, 3]. It can be calculated by integrating the 

following equation backwards in time from a given reference point on the limit cycle [3, 4]: 

 ̇                  .         (4) 

The final condition is  (  )  (         ⁄ (  (  ))       )
 

, where the entry 

   ⁄ (  (  )) is at the lth position and ensures a normalization such that       (    )   . 

The matrix      is the Jacobian matrix evaluated along the limit cycle. As an example we 

computed the iPRCs for the oscillators in our SCN network with the parameter   determining 

the number of long-range connections set to 0.0035 (Section 7, Figure S5). For a square pulse 

      with short duration during the phases    and    and small amplitude  , the iPRCs can 

be used to approximate the PRC [2]: 

         ∫ ∑           
  
   

  

  
.       (5) 

This shows that the magnitude and shape of the overall PRC is determined by the sum of the 

iPRCs of the individual oscillators. 
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2. Phase synchronization of weakly coupled oscillator networks 

It is known that N uncoupled identical oscillators              possess N zero 

Floquet exponents that correspond to perturbations in the direction of the phase. Weak 

coupling of the oscillators (small coupling strength  ) leads to     of these Floquet 

exponents becoming  -small. These exponents determine the rate of relaxation to 

synchronization in the subspace of phases of the oscillator network. The Floquet exponents 

    can be approximated by the eigenvalues    of the following matrix [5]: 

  (
 ∑    

   
     

   
     ∑    

   
 

),       (6) 

where: 

    
 

 
∫     

   

   
               

 

 
.       (7) 

Here      is the vector of iPRCs (see eq. 4) along each dimension of the uncoupled oscillator 

     and         is the right-hand side of the uncoupled oscillator evaluated along the limit-

cycle. The Jacobian matrix 
   

   
 describes how the dimensions of the oscillators i and j are 

coupled to each other along the limit cycle. 

In fact this result can be proven for a more general setup by using the phase reduction method 

[1]. Consider the network of coupled heterogeneous n-dimensional oscillators: 

 ̇                          ,       (8) 

where we can expand the right-hand side for small   as                         

 
   

  
             . Thus, we can write the coupled system as: 

 ̇                             .      (9) 

Further we assume that the differences in the oscillators are small and, for simplicity, of the 

same order of magnitude as the coupling strength  . This implies that the deviations in the 

oscillator frequencies    are also  -small. The imaginary oscillator derived after averaging 

over the uncoupled oscillators has a limit cycle solution              〈 〉⁄  , with 

average period     〈 〉⁄ , 〈 〉    ⁄ ∑     , and is governed by the averaged right hand 

side     .      is the vector of iPRCs of the uncoupled imaginary average oscillator and is   

periodic. To avoid complicated expressions it is convenient to redefine    and   as    

periodic functions:            〈 〉⁄   ,          〈 〉⁄   . 

The reduction to the individual oscillator phases         yields [1]: 

 ̇             ( 
              )        (10) 
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We now define the phase differences to the synchronized state:          with     

     . The frequency of the phase locked state,  , is determined by a solvability condition 

for the stationary phase differences. It will be given in the next section. The evolution of the 

phase differences is then governed by: 

 ̇                   ( 
                    ).    (11) 

Here we assume that the differences           of the individual frequencies to the 

synchronized frequency are  -small. We will see that this is justified if the differences to the 

average oscillator frequency are  -small, which we assumed above. Then we can write: 

 ̇    (              ( 
                    )).    (12) 

Since   is small the changes in the    are slow compared to the movement of the reference 

oscillator. Therefore, we are permitted to average over one cycle       ⁄  and consider    

on the slow time scale   : 

 ̇       
 

  
∫           ( 

                    )  
  

 
.   (13) 

The integral term is only a function of the phase differences          . This can be seen 

by rewriting the term as: 

 

  
∫           ( 

                                )   
  

 

 

                  .         (14) 

Due to the in-phase locking of the oscillators we can linearize the term around small phase 

differences and finally obtain: 

 ̇             ∑
 

  
∫     

   

   
(     ) (     )   

  

 
 
   (     )    (15) 

where       
 

  
∫       ( 

    )   
  

 
 is the contribution to the i-th oscillators frequency 

arising due to the coupling to the other oscillators. We can write the system in matrix form 

using the matrix from eq. 6: 

 ̇     ̃               (16) 

with   ̃                         
 . 

A phase distribution    around the synchronized frequency phase is given by solving the 

linear equation system   ̃        and we will consider it in more detail in the next 

section. The stability and time scale of approaching this phase distribution is given by the 
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eigenvalues of the matrix M. Transforming the system into normal coordinates (denoted by 

 ), given by the eigenvectors of the matrix M, makes this more obvious [6]: 

  ̇     ̃                          (17) 

Note that some of the eigenvalues might also have an algebraic and/or geometric multiplicity, 

which we did not take into account here. If all eigenvalues of M have a negative real part, the 

synchronized phase distribution    is stable and all oscillators are locked in-phase with 

frequency  . 

 

3. Synchronized frequency and its phase distribution 

It was shown that the magnitude of the Floquet exponents determines how fast the oscillators 

or groups of oscillators synchronize their phases to each other [7, 8]. Especially, near-zero 

eigenvalues indicate a clustering in the network with groups of oscillators that do not or only 

weakly synchronize to each other. It was numerically shown that the phase-of-peak 

distribution     gets broader the more near-zero eigenvalues the Laplacian of the network 

possesses and consequently the more clustered the network becomes. Here, we present an 

analytical derivation of this for the general case considered above. 

The synchronized phase distribution    is given by solving the linear equation system: 

       ̃.           (18) 

A simple inverse of the matrix M does not exist, because one of its eigenvalues is zero: 

     with corresponding eigenvector     √ ⁄         . This means that the system is 

neutrally stable to a simultaneous shift in all phases. This is to be expected since we can view 

the overall network as an oscillator, which again has a zero eigenvalue into the direction of its 

phase. 

A solution to eq. 18 can be given in terms of the pseudoinverse    of  : 

        ̃          ,        (19) 

with   chosen arbitrary. The pseudoinverse can be given in terms of a singular value 

decomposition (SVD) of M:  

      ,          .         (20) 

Here U and V are orthonormal matrices with columns made up by the left and right singular 

vectors, respectively. In our case the kernel vector     √ ⁄          of M is one of the 

singular vectors of V and    the kernel vector of    is one of the singular vectors of U.   is a 

diagonal matrix with the singular values √   corresponding to the singular vectors along the 
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diagonal. The singular values are the square roots of the eigenvalues of     or     and 

any zero eigenvalue is also a singular value. For convenience we put the zero singular value 

   into the upper left corner of  . The pseudoinverse of a diagonal matrix is simply given by 

taking the reciprocal of each non-zero element on the diagonal, leaving the zeros in place, and 

transposing the resulting matrix. 

The linear equation system in eq. 18 is only consistent and thus has at least one exact solution, 

when the following condition holds: 

     ̃    ̃      
                   

               .  (21) 

If this equation does not hold the solution in eq. 19 will only be a least fit to eq. 18 and thus 

not a stable solution because then the right-hand side is not exactly zero in eq. 16. Using this 

condition we can determine  : 

                     

  

(

 
 

  
  

 
  
  

   
  
  

 
  
  )

 
 

      

(

 
 

  
  

 
  
  

   
  
  

 
  
  )

 
 

         
 . 

Therefore, we obtain     
               

 (                     )
 
 and finally: 

  
∑                

∑     
.          (22) 

Thus, besides the variations in the oscillators, the kernel vector of    determines the locked 

frequency. For the derivation to be closed, we now need to show that the deviations between 

the synchronized frequency and the individual frequencies are  -small, when the deviations 

from the average oscillator frequency 〈 〉     ∑     are of the order   as assumed in the 

previous derivations: 

          
∑                   

∑     
  

∑      〈 〉   〈 〉         

∑     
.    (23) 

This shows that the averaging in eq. 13 is justified. In a similar way we obtain: 

  ̃     
              

∑    ( 〈 〉   〈    〉   〈 〉   〈    〉 ) 

∑     
 

  〈 〉   〈    〉  
∑      〈 〉   〈    〉   

∑     
,       (24) 

where  〈 〉      〈 〉     ,  〈    〉  〈    〉        and 〈    〉     ∑       . Thus 

the vector   ̃ is mainly determined by the deviations from the average values of the oscillator 

frequency and the coupling contribution. 
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Eq. 19 can be simplified by noting that           
 : 

        ̃    
          ̃   〈 〉   〈 〉  .     (25) 

Therefore, as expected the solution is not unique with respect to a simultaneous shift of all 

oscillators. For convenience we consider the solution with    . 

To characterize the distribution some more we now assume that   ̃ is Gaussian distributed 

with the simple variance    ̃
  . Since    is a linear transformation of   ̃ its distribution is 

also Gaussian with variance: 

     ̃          ̃            ̃ ∑
 

  
  

   
 
   .     (26) 

This shows that the variance is mostly determined by the squared singular values that are near 

zero. Moreover, the singular vectors corresponding to these near-zero eigenvalues are near to 

the kernel vector     √ ⁄         . This can be seen from the definition of the singular 

vectors: 

    √     ‖  ‖  ‖  ‖           .      (27) 

For very small singular values the equation is similar to the equation determining the kernel 

vector. This implies that   
    will be very similar to   

      ⁄   (where 1 is a matrix 

filled with ones). Thus, the near-zero singular values dominate the overall variance of the 

stable phase distribution   . 

In the case of a symmetric matrix M, which arises for a symmetric bidirectional coupling with 

all couplings similar, the singular values and their vectors can be replaced by the eigenvalues 

and eigenvectors of M. Numerical calculations show this analytically derived behavior [6]. 

 

4. Special cases of coupling 

Next, we consider some special but common cases of coupling. If all oscillators are coupled 

symmetrically, additively and in the same way, the synchronized frequency in eq. 22 is:  

  〈 〉   〈 〉    .          (28) 

The system in eq. 16 simplifies to: 

  ̃    〈 〉   〈 〉         〈 〉   〈 〉       ,     (29) 

    ,           (30) 

where,      
 

  
∫      (     )   

  

 
,   

 

  
∫     

  

  
(     ) (     )   

  

 
,  〈 〉  is the 

deviation of the i-th oscillator from the average number of connected oscillators 〈 〉 and 
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        (∑     )    are the entries of the symmetric Laplacian matrix L of the oscillator 

network defined by the adjacency matrix A. Thus, in this case the matrix M is identical to the 

Laplacian L of the oscillator network up to a constant factor and the eigenvalues of L 

determine the dynamics of synchronization. Therefore, it suffices to analyze the Laplacian of 

the network in this case. 

In our model the bidirectional couplings between the oscillators are weighted by the number 

of connections    the i-th oscillator has and therefore are not symmetric (see manuscript, 

Section: Oscillator Network, eq. 3). However, since we can write the matrix M as follows: 

        (  
       

  )       ,       (31) 

the kernel vector    of          is simply given by          . Thus the synchronized 

frequency from eq. 22 is given by: 

  
∑      

∑    
      . 

The weighting leads to the following linear system: 

 ̇     ̃                   (32) 

  ̃    〈 〉  
∑    〈 〉  

∑    
    〈 〉  

∑    〈 〉  

∑    
  .      (33) 

For our model the system simplifies further due to the linear coupling between the oscillators 

and the simple one-to-one coupling of oscillator dimensions: 

  

  
 (

  
  

),   
 

  
∫               

  

 
   .      (34) 

Here the last identity follows from the normalization condition       (    )   . 

Therefore, in this case the matrix M is identical to L. Moreover, for our model it is easy to 

show that: 

     
 

  
∫      (     )   

  

 

 

 
 

  
∫  

 

  (
          

          
)   (

           

           
)   

  

 
      (35) 

 

5. Spectral Graph Analysis and Synchronization 

The community structure of undirected networks can be characterized by the eigenvalue 

spectrum of the network’s symmetric Laplacian matrix L (see Eq. 5 of main text). These 

eigenvalues can be ordered by increasing magnitude and due to the special construction of the 
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Laplacian it always has a trivial zero eigenvalue. Any further zero eigenvalue indicates that 

the graph is partitioned into disconnected components. However, also eigenvalues that are 

near-zero indicate components that are loosely connected. These eigenvalues can be related to 

the so called algebraic connectivity of the network [9]. Especially, the second smallest 

eigenvalue bounds the isoperimetric number of the graph via the cheeger inequalitiy [10]. In 

general, a small isoperimetric number indicates 'bottlenecks' in the graph. The network can be 

subdivided into communities via these bottlenecks. This is done by considering the 

eigenvectors associated with the eigenvalues, also known as Fiedler vectors. Nodes can be 

assigned to specific communities according to the values of the eigenvectors and in fact there 

are algorithms that partition graphs according to the eigenvector and eigenvalue values [11, 

12]. 

For non-symmetric networks, as in our study due to the local mean-field coupling, the 

singular value spectrum becomes important. We have calculated the singular value spectra for 

both the summer and winter topology for 25 replicates of our network structure (Section 7, 

Figure S6). The large fraction of singular values near 1 corresponds to groups of oscillators 

that are well connected to each other. In our case the local mean field coupling leads to a 

normalization of the singular values around 1 as was discussed in a previous study [7]. It 

should be noted that a fully synchronized network still possesses one trivial zero-

eigenvalue/singularvalue, which describes a simultaneous phase advance in all oscillators. 

The winter topology shows only the trivial zero-eigenvalues (25, one for each replicate) at 

zero (Section 7, Figure S6B). On the other hand for the summer topology one observes 

additional near-zero singular values, leading to a larger bin of the histogram around zero (>25, 

Section 7, Figure S6A). With our theoretical results from the previous sections 2-4 it is now 

clear that for the summer topology the phase distribution is broader, since small singular 

values lead to a large variance in the phase distribution (see Eq. 26). 

It was shown previously that the spectral properties of the Laplacian also affect the 

synchronization dynamics [6, 7]. In particular, the individual eigenvalues can be related to 

separate timescales of synchronization of oscillator communities associated to the Fiedler 

vectors. In these numerical studies, especially graphs with community structure, indicated by 

small non-zero eigenvalues as in the summer-topology (Section 7, Figure S6A), showed 

worse synchronization behavior in the sense that stronger coupling is needed to achieve a 

similar amount of phase synchronization as in a network with no community structure. This is 

intuitively to be expected since the bottlenecks limit the coupling from one community to the 

other and in general the communities are connected only via a few nodes. These bottlenecks 

also intuitively explain why the phase distribution is broader in the summer topology. 

Moreover, for the winter topology a gap between the zero and non-zero singular values can be 

observed (Section 7, Figure S6B), indicating fast synchronization of the SCN cells in winter, 

since slow timescales are missing.  
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6. Entrainment of a single amplitude-phase oscillator 

In this section, we want to analyze the entrainment behavior of a single oscillator of the type 

considered in our study (see Eqs. (1) and (2) in the main text). Ultimately, we aim at deriving 

analytical expressions for the entrainment border of the entrainment region (commonly 

referred to as Arnold tongue). In line with our study, we consider entrainment by square-

shaped signals. The amplitude-phase oscillators we consider are generally given by: 

 ̇                  (36) 

 ̇         ⁄       ⁄ .         (37) 

Here T determines the offset such that the oscillator has a period of   or frequency       . 

Circadian rhythms always have    . Integrating the system by separation of variables and 

relating the period   to    we derive         √       ⁄ . For the oscillator used in 

our study            , which is commonly referred to as the Poincaré oscillator. 

Applying a forcing      , where   is the entrainment amplitude and      a function with 

frequency   
  

  
, to the x-coordinate (rectangular coordinates) the system in polar 

coordinates is given by: 

 ̇                          (38) 

 ̇  
 

 
    ⁄  

 

 
     

 

 
                  

 

 
         .   (39) 

The key to analyzing this system is to separate slow time-scales of amplitude and/or phase 

adaptation and fast time-scales of external forcing. The method of choice is the averaging 

technique introduced by Krylov and Bogolyubov [13]. However, a straightforward application 

of this method is hindered by the fast terms involving  . A solution to this problem is to 

project the phase of the forced system onto a suitable chosen phase of the unperturbed limit 

cycle. A suitable chosen phase is here defined as a constantly (with time) increasing variable 

[1]. 

Such a projection can be found by considering the unperturbed phase in Eq. (37). Performing 

the first steps of separation of variables we obtain: 

     ∫
 

        
   

 

 
  .        (40) 

This shows that a suitable phase is given by t with the corresponding projection     . We 

now consider the projection          ̃ of a solution of Eqs. (38) and (39) and compute its 

time derivative: 

  ̃

  
 

     

  
|
    

 ̇    
 

          

 

 
            .     (41) 
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The term  
 

 

       

          
  

 

 

        ̃ 

           ̃ 
        ̃  is the infinitesimal phase response 

curve of the oscillator with respect to a perturbation in the x-coordinate, already introduced in 

section 1 Eq. (3). Performing the integration in Eq. (40) we obtain: 

     ̃        (
   

√     
   (   √      ̃))        (

   

 
        ̃ )  (42) 

and after some tedious algebra we derive a simple expression for the phase response: 

       ̃   
 

  
     ̃.         (43) 

For completeness, we also give the phase response in the y-coordinate, which can be obtained 

in a similar manner: 

       ̃  
 

   
          ̃ .        (44) 

This shows that in general a forcing in the y-coordinate is not preferable since it shifts the 

entrainment region away from the intrinsic period towards lower periods. 

After defining the new phase as  ̃    ̃, the system in Eqs. (38) and (39) is rewritten as: 

 ̇                ̃             
   √          ̃

√            ̃
        (45) 

 ̇̃    
 

 
    ̃      .         (46) 

It now makes sense to introduce the phase difference to the external forcing    ̃     and 

consider several limit cases to obtain analytical expressions for the entrainment range. 

First of all, let us consider rigid oscillators (   ). Then the amplitude of the oscillator will 

not change under forcing and will be              (     is an unstable solution). 

Thus, the above system reduces to one equation for the phase difference: 

 ̇      
 

 
                 

 

 
              .    (47) 

If   and   are small then   will be a slow moving variable compared to the forcing and thus 

we can average over one external period   : 

 ̇    
 

 

 

  
∫                

  

 
.       (48) 

Here   has to be seen as the variable on the slow time scale. The integral is performed easily 

for a sinusoidal or square-shaped forcing signal. To be specific we here consider a square-

shaped function      with period    that starts with 1 at     and is set to 0 for     . Here 

   is the width of the entraining signal (see also main text). Then the integral is given by: 

 

  
∫                

  

 
 

           

 
      

  

  
  

 

 
  

       

 
         . (49) 
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Here we defined        . This implies that the entrainment region for rigid oscillators 

under rectangular forcing is given by: 

  
 

       
 | |.          (50) 

Let us now consider weak oscillators (   ). In this case, the amplitude dynamics in Eq. 

(45) cannot be neglected. However, if   and   are small the amplitude dynamics can be 

treated by the same averaging method we already used for the phase difference dynamics: 

 ̇         
 

  
∫

   √               

√                 
      

  

 
,      (51) 

 ̇    
 

 

       

 
         .        (52) 

Again   and   should be interpreted as variables on the slow time scale. Even for a 

rectangular forcing      the integral is rather complicated, although it can be solved exactly. 

Therefore, we consider two additional limit cases: sinusoidal oscillators with     and 

spiking oscillators with    . For     the system reduces to the original system in Eqs. 

(38) and (39) and the integral under the previously defined rectangular forcing is given by: 

 

  
∫                

  

 
 

       

 
         .       (53) 

Thus, we obtain the following equations for the steady state solution: 

        
       

 
           ̃      ̃ ,      (54) 

    ̃      ̃ .          (55) 

We have:  

   ( ̃)  
   ( ̃)

   ( ̃)
 

   

     
  ̃       (

   

     
),      (56) 

  
 

 ̃
    (     (

  

     
))  

   

√(     )
 
      

  ̃  (     )
 
           .  (57) 

For the Poincaré oscillator in our study we have:                     . Obviously 

this function is always larger or equal to 0, goes through the origin (0,0) and has a maximum 

and a minimum between     and   at: 
 

 
  √                  and 

 

 
  

√                 , respectively. These minima and maxima exist only for | |  

√     . Thus, Eq. (57) that determines the entrained amplitude has three solutions for 

| |  √      and one solution for | |  √     . Therefore, the entrainment region is 

determined by the linear stability of these solutions. The coefficients of the quadratic 

characteristic polynomial of the system are given by: 
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 ̃     ̃         

     

 
               ,     (58) 

   (
 ̃

 
    ̃)

 

      
 ̃

 
    ̃     

         

 
                    . (59) 

The first coefficient is negative for       . According to Hurwitz’ criterion solutions with 

       will be unstable. The second coefficient is negative between the maxima and 

minima of the function      in Eq. (57): 
 

 
  √                    

 

 
  

√                 . Therefore, according to Hurwitz’ criterion these solutions will be 

saddle points and unstable. Thus, for | |  √      the entrainment border is given by 

      . For | |  √      the situation is more complex since additionally to the stable 

solution right to the minimum of the function      in Eq. (57), there can be an additional 

stable solution if  
 

 
  √                      . This is the case for       | |  

√     . We find that for    √      √         | |  √       the function 

value         is smaller than   
 

 
  √                   and therefore the first 

function value (at        ) corresponds to the larger entrainment border. However, since 

   √      √             is very near to √          we may also use the simpler 

bound √      for small   . Summarizing the discussion, the entrainment borders for weak 

sinusoidal Poincaré oscillators under rectangular forcing are given by: 

  
 

       
  √                

 

 
  √(

 

 
 )

 

 
 

 
(
 

 
)
 

   | |  √      (60) 

  
 

       
  √                

 

 
      | |  √     . (61) 

We can see that since      the entrainment region of weak sinusoidal Poincaré oscillators is 

always larger than that of the corresponding rigid oscillators. The reason for this is the 

decrease of the entrained amplitude near the entrainment border. 

Let us now consider weak spiking oscillators with    . We then have to deal with the full 

integral in Eq. (51). The integral can be calculated as: 

       
√      

 
 

  

  
(     (

     (
 

 
   )

  √      
)       (

     (
 

 
)

  √      
)).  (62) 

The terms involving the cotangents can be bounded by 0 and  . Thus, we have   
√      

 
 

        
√      

 
 

  

 
 and for     a good approximation is        . Using this 

approximation in Eq. (51) we have the following equations determining the steady-state 

solutions of the slow variables: 

        ,           (63) 
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 ̃

 
     ̃ .           (64) 

Here, the equations decouple and the steady-state solutions can be easily found. For the 

Poincaré oscillator amplitude, we obtain a stable (+) and an unstable (-) solution at: 

   
 

 
 √(

 

 
)
 

  
 

 
         (65) 

Here an interesting phenomenon appears for a weak spiking oscillator forced by square-

shaped signals. For all initial amplitudes below the unstable solution,  
   
→    on the slow 

time scale. Moreover, at: 

  (
 

 
)
  

 
           (66) 

the stable solution vanishes and for all initial conditions on the slow time scale  
   
→   . Let us 

first consider the stable solution for   (
 

 
)
  

 
. Then the entrainment border is given by 

solving Eqs. (63) and (64) with the sine term set to 1: 

  
 

       
 | |  

 

 
(

 

       
 )

 

 | |  
       

 

 

 

 

 
 .     (67) 

Notice that as in the case of a sinusoidal oscillator, weak spiking oscillators show a larger 

entrainment region. Now let us consider the case where  
   
→   , either because the initial 

conditions are below the unstable steady state or because the forcing strength is larger than the 

bound in Eq. (66). This case can be interpreted as the forcing being stronger than the internal 

dynamics of the oscillator. In this case, as     the averaging technique breaks down since   

in Eq. (52) will no longer be a slow moving variable due to the     term. Thus, we have to 

consider the full system in Eqs. (45) and (46). However, since     and     we can 

neglect the      term: 

 ̇  
√          ̃  

√            ̃
              (68) 

 ̇̃    
 

 
    ̃      .         (69) 

For     an attractor of this system always exists. Obviously, during        the 

amplitude does not change, while the phase moves according to its internal frequency  . 

Now, consider the onset of the external forcing (       ). Assume that at this point  ̃ is 

somewhere near  . Then  ̇         and thus    . This implies that the phase 

dynamics in Eq. (69) becomes very fast, i.e. a phase-resetting occurs. It now depends on how 

near  ̃ is to  , whether a)  ̇̃    and thus a resetting to the old phase occurs, or b)  ̇̃    and 

thus a resetting to a new phase with  ̃     occurs. After this very fast resetting and as long 

as        (    ) the dynamics will stay at the steady state determined by setting Eqs. (68) 

and (69) to zero: 
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 ̇    
√          ̃  

√            ̃
    ̃        (

 

√      
) ,    (70) 

 ̇̃       
 

 
    ̃       √

 

      .      (71) 

Here only the positive phase is a stable solution. We now have characterized the behavior of 

this low amplitude attractor. Next, we approximately derive the entrainment bounds. As we 

already have seen above in case a) the phase will always be resetted to  ̃  and thus |    |  

| ̃      |
   
→   . In a strict sense, this means that no entrainment is possible, since the 

oscillator phase cannot follow the external phase due to resetting. On the other hand consider 

case b) in this case at the k-th resetting the phase will be shifted to a point above    to the 

steady state at  ̃         . This implies |    |  | ̃      |     and thus 

entrainment of the oscillator. Therefore, the upper condition for the entrainment (in a strict 

sense) is approximately given by: 

 ̃      ̃   (     )     ̃          
  

    ̃ 
.    (72) 

On the other hand, since we only consider 1:1 entrainment, a lower bound can be given as: 

 ̃      ̃   (     )      ̃          
  

     ̃ 
.    (73) 

These bounds becomes more exact the larger  . However, as mentioned above the bound in 

Eq. (72) is for entrainment seen in a strict sense. This means that the phase  ̃    of the 

oscillator, measured as the phase of the unperturbed oscillator, follows the external phase. To 

overcome this limitation we may look at each resetting event as a resetting of  ̃    to  ̃  

during which  ̃    crosses   . Then the bound in Eq. (72) is meaningless, which means that 

entrainment to periods smaller than the internal period is always possible for weak, spiking 

oscillators due to the domination of the dynamics by the rectangular forcing. 

All entrainment borders of the individual oscillator in the specific cases considered are shown 

in Figure S7 (Section 7). 
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7. Supplementary Figures S1-S11 

 

 

Figure S1. Transient time evolution of the mean-field for summer – δ=0.005, tp =16 (A) 

and winter – δ=0.01, tp =8 (B) conditions. All simulations were started with initial 

conditions randomly distributed around x = 1 and y = 0, according to a normal distribution 

with a standard deviation of 0.2. Just a few periods are necessary for the system to get into its 

final dynamical state. 

 

 

Figure S2. Oscillatory activity patterns of all N = 600 SCN neurons. (A) Summer 

conditions: 16p t , 005.0  and (B) winter conditions: 8p t , 01.0 .   
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Figure S3. Global activity patterns of the SCN. Time courses of the mean field for winter–

01.0 (A) and summer – 005.0 conditions (B). In both cases different durations of the 

light signal have been applied ( 8p t
 
and 16p t ). Evidently, the network structure is the 

crucial factor defining the shape of the global activity, whereas the duration of the light input 

has an almost negligible effect. 

 

 

Figure S4. Phase response curves of the SCN network obtained at different pulse 

amplitudes. The curves indicate changes in the phase of the mean field signal for summer      

( 005.0 ) and winter ( 01.0 ) conditions. In both cases the pulse had a duration of 4 h. 
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Figure S5. Instantaneous phase response curves of all light-receiving neurons. Individual 

PRCs for 0035.0  (A) and the corresponding summed up phase response (B). Time is 

scaled to circadian time. 

 

 

Figure S6. Singular value spectrum of the Laplacian matrix L of the network. (A) 

Summer topology ( 005.0 ) and (B) winter topology ( 01.0 ). Each spectrum was 

calculated over 25 independent realizations of the network structure. 
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Figure S7. Entrainment borders of the single oscillator under rectangular forcing. 

(Solid, Black) Rigid oscillator with fast radial relaxation 1 ; (Dashed, Red) Weak, 

sinusoidal oscillator with slow radial relaxation 05.0  and 0 ; (Dotted, Yellow) Weak, 

spiking oscillator with slow radial relaxation 05.0 and 1 ; other parameters were set to

1A  and ep 2/1 tt  . Note that the weak, spiking oscillator is practically entrainable to every 

period if the entrainment amplitude is above the dotted, yellow horizontal line. 
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Figure S8. Calculations for the SCN network constituted of N = 1800 neurons. Network 

properties (A) and spectral analysis (B), the average amplitude h of the mean field signal (C) 

and its width w (D) as a function of the network parameter  . 

 

 

Figure S9.Temporal evolution of the mean-field behavior U of the Goodwin oscillator 

network. The black and red lines signify the time courses for winter ( 01.0 , 8p t ) and 

summer ( 005.0 , 16p t ) conditions, respectively. The amplitude of the entraining signal 

is not in scale.   
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Figure S10. Properties of the electrical activity of the SCN network in the case of a 

reduced coupling strength of long-range connections. In this simulation, a network of 600 

neurons with probability 01.0  for the introduction of long-range conditions is considered. 

To simulate the transition to summer conditions the coupling strength for half of the long-

range connections is reduced by different degrees g. The average width of the mean-field 

signal (A) and the average correlation coefficient (B) are plotted as a function over g. In 

particular, g=0 reflects winter conditions and g=1 signifies summer conditions, where the 

coupling constant is set to zero for half of the links reflecting 005.0 . Obviously, reducing 

the coupling strength leads to very similar results as a complete deletion of long-range links. 

 

 

Figure S11. Effects of a rapid transition from winter to summer topology on the 

electrical activity of the SCN. A network of N=600 neurons with winter topology ( 01.0 ) 

is entrained to short photoperiods. After a certain transient time the network is changed to the 

summer topology ( 005.0 ) and entrained by long photoperiods. 
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