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1 Model development

1.1 Previous Work

The modeling part of this work is based on a previously developed model of bone homeostasis introduced
in [1,2]. This model describes the spatio-temporal evolution of osteoclasts and osteoblasts as well as their
interactions through the RANK/RANKL/OPG pathway, and can be summarized as follows

∂tu1 = α1u
g11
1 − β1u1 − ζ∇ · (y1∇φR) + k1

φR

λ+φR
θ(y1) u1

∂tu2 = α2u
g12
1 − β2u2

∂tφR = aR y2,tR + κR∆(φεRR )− k2 φR

λ+φR
θ(y1) u1 − k3φRφO

∂tφO = aO y2,tO + κO∆(φεOO )− k3φRφO
∂tz = −f1 y1 + f2 y2.

(1)

Featured in (1) are the following state variables: osteoclasts (u1), osteoblasts (u2), the RANKL field
(φR), the OPG field (φO) and the bone mass (z), which is ρB in the current model. The fields yi are the
active cell populations and differ from the total cell populations ui by an additive constant (see discussion
in main text). Note that θ is the Heaviside function (θ(x) = 1 for x > 0 and θ(x) = 0 otherwise), and
y2,τ is a delay term defined by

y2,τ = e−β2τy2(t− τ), τ > 0. (2)

Among the various pathways involved in the remodelling process, only the RANK/RANKL/OPG pathway
is modeled explicitly, the other pathways are captured by the nonlinearities in the ui equations. We discuss
now the improvements and modifications of (1) that lead to the models used in Scenarios 1-5 in this study.

1.2 Osteoclast stimulation by RANKL

RANKL activates and stimulates osteoclasts by binding to RANK receptors on their surface. In (1), this
ligand-receptor interaction is captured in the last term of the osteoclast equation as well as the third
term in the RANKL equation,

± ki
φR

λ+ φR
θ(y1) u1. (3)
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Note that we have two different reaction rates k1, k2 to account for the reversibility of the RANK-
RANKL binding: since a ligand can contribute to the stimulation of a cell without getting permanently
bound to the receptor, we generally have k2 < k1. The dependence on θ(y1)u1 in (3) ensures that
only osteoclasts in the vicinity of the remodeling front of active cells are stimulated by RANK-RANKL
interactions. Even though this choice lead to satisfying results in previous studies, we chose to replace
it as θ(y1)u1 7→ y1. The reason for this choice is twofold: first, the dependence on θ(y1)u1 implied that
precursor cells responded to RANKL when close to the remodeling front, but not when further away
from it. In absence of experimental evidence for such a functional distinction, the choice y1 seems more
meaningful. Second, from a mathematical point of view the use of the Heaviside function is expected
to decrease the regularity of the solutions and hence by replacing it with a linear dependence as ∼ y1,
the regularity of the solution is increased, and in particular the problem becomes more tractable from a
numerical perspective.

Another issue with the RANK-RANKL term (3) is the proportionality constant k1: in fact, active
osteoclasts are at all times attached to the bone surface and this implies that the activation of osteoclastic
activity should vanish as the local bone density ρB goes to zero. Despite these observations, the choice
of keeping k1 constant throughout this study (except for Scenario 3) can be justified a posteriori by
observing that the RANKL gradients are consistently guiding the active osteoclasts away from previously
resorbed spots (see e.g. Figure 8-A in main text). In Scenario 3 however, the RANKL gradient is reversed
and guides osteoclasts towards the already resorbed centre of the domain (see Figure 6 in main text).
Therefore, we modeled the linear dependence k1 ∼ ρB explicitly to avoid physiologically unfeasible
situations as discussed in [2].

1.3 Chemotaxis

Chemotactic movement of osteoclasts has been documented in several studies, see e.g. [3], as well as [4]
and [5]. Since distressed osteocytes have been shown to express RANKL [6,7], it seems plausible that there
is a RANKL gradient away from damaged sites (e.g. microfractures). Interestingly though, there need
not be a predefined RANKL gradient in the tissue: as illustrated by Figure 3-A in the main text, which
starts with a homogenous RANKL field, the binding of RANKL to RANK receptors is sufficient to create
a local gradient, which in turn drives the osteoclast movement. Furthermore, as pointed out in Scenario
4, there need not even be a sufficient RANKL background level at time t = 0: the production of PTHrP
by the tumor is sufficient to induce the necessary RANKL for osteoclast stimulation and chemotaxis. In
conclusion, the outcome of the simulations is largely independent of a pre–existing RANKL gradient in
the tissue, and relies only on the well–documented properties of osteoclastic stimulation and attraction
by RANKL.

1.4 Porous Diffusion

In the homeostasis model (1) we assumed φR to obey porous diffusion dynamics, i.e. we allowed for
exponents εR > 1. The main difference between regular diffusion (ε = 1) and porous diffusion (ε > 1)
becomes apparent when considering the model equation on R,

∂φ(t, x)

∂t
=
∂2φε(t, x)

∂x2
. (4)

The dynamics of (4) with ε = 1 have infinite propagation speed, i.e. for any t > 0 the solution φ will have
infinite support, even if the initial field was compactly supported. On the other hand, solving (4) with
ε > 1, compactly supported initial conditions will remain so for all t > 0, see [8]. Even though the choice
of porous diffusion seems more meaningful for a mainly membrane bound cytokine such as RANKL, when
we repeated all the simulations in this study for εR = 1.5, 2, 2.5, we observed no qualitative differences
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to the case ε = 1. This observation, combined with the numerical advantage of working with a linear
diffusion term, lead us to set εR = 1 in this study.

1.5 Finite Osteoclast Speed

As observed in Figure 8A, tumour-derived OPG leads to an increase in osteoclast migration speed: the
distance traveled by the remodeling front during 90 days monotonically increases with increasing OPG
production τO. The present model does not account for an upper limit as to how fast osteoclasts can move
across the trabecula. Osteoclasts have been shown to travel at a speed of ∼ 10µm per day in physiological
settings, and 5–10 times faster in cancer patients [9, 10]. Since the maximal distance travelled by the
cutting cone in our simulations is 7 mm in 90 days (Figure 5C in main text), the numerical experiments
reported in this study are within the range of realistic osteoclast speeds.

1.6 Undirected Osteoclast Motility

Many chemokines are known to induce random cell motility in addition to directional cell migration. To
our knowledge, there is no experimental evidence that RANK-RANKL binding leads to an increase in
undirected motility of osteoclasts. Nevertheless, we wanted to make sure that the nonlinear relationship
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Figure 1. Undirected osteoclast motility. Potential stimulation of random osteoclast motility by
RANKL does not result in qualitative differences in model outcome. The set of simulations in Figure
5C of the main text are repeated, this time accounting for undirected motility of osteoclasts. The
simulation is repeated for different values of initial RANKL φ0R, and different levels of OPG production
by cancer cells, τO. After 90 days, the following quantities are shown: distance traveled by osteoclasts
(Distance), total number of active osteoclasts (OC), and total tumor mass (Tumor).

of tumor burden and OPG production in Figures 5C and 8B of the main text would also be observed if
diffusive movement of osteoclasts did occur. In order to account for diffusive movement of osteoclasts,
we replaced the osteoclast equation in system (6) of the main text by

∂u

∂t
= αug − βu− ζ ∂

∂x
(ua

∂φR
∂x

) + k1
φR

λ+ φR
ua + σu

∂u2a
∂x2

. (5)
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The new parameter σu represents the diffusive motility of osteoclasts. In absence of experimental esti-
mates, we used the tuning strategy for free parameters (as described in Section 3 below) to determine σu.
We set σu = 10−3mm2d−1 since we found that higher values of σu lead to osteoclast populations that
moved too fast and did not stay compactly supported. We next assessed how osteoclast movement and
tumor growth were affected by the changes in OPG production by tumor cells, and compared predictions
of the model with osteoclast motility to the model without osteoclast motility (presented in Figure 5 in
the main text). We found that accounting for osteoclast diffusion leads to a qualitatively similar behavior:
the tumor burden remains a bell-shaped function of the OPG production rate τO (Figure 1 of SI Text 1).
In view of these observations, we decided to avoid unnecessary complexity and uncertainty in our model,
and set σu = 0 for all simulations in the main text.

1.7 Reversibility of RANKL–OPG binding

We assumed that the binding of RANKL and OPG is irreversible, since to our knowledge, there is no
experimental evidence that suggests otherwise. Nevertheless, to make sure that the possible existence of

0 2 4 6
6

8

Tumor

τ
O

 
0 2 4 6

2

4

6

τ
O

 

OC

0 2 4 6
2

4

6

Distance

τ
O

 

 

 

k
4
=0

k
4
=0.1

k
4
=0.3

Figure 2. Reversibility of RANKL/OPG binding. Potential reversibility of RANKL/OPG
binding does not result in qualitative differences in model outcome. The set of simulations in Figure 5C
of the main text are repeated, while accounting for reversibility of the formation of [RANKL/OPG]
complexes. The tissue level of RANKL is φ0R = 2, and the simulation is repeated for different values of
k4 (RANKL-OPG dissociation rate), and different levels of OPG production by cancer cells, τO. After
90 days, the following quantities are shown: distance traveled by osteoclasts (Distance), total number of
active osteoclasts (OC), and total tumor mass (Tumor).

reversibility would not lead to qualitatively different results, we re-examined the simulations of Scenario
2, but this time accounting for reversibility of the [RANKL/OPG] binding. We introduced a new state
variable φRO and added the following reaction-diffusion equation to system (6) of the main text,

∂φRO
∂t

= σRO
∂2φRO
∂x2

− k4φRO + k3φRφO, (6)

where k4 (units are d−1) is the dissociation rate, and σRO is the diffusion constant for the complex. We
assume that the complex remains membrane-bound, and therefore we set σRO = σR, the diffusion rate
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of membrane-bound RANKL (see Section 3). Furthermore, conservation of mass dictates the addition of
the term +k4φRO to the RANKL and OPG equations, respectively. Fixing an intermediate background
RANKL level of φ0R = 2, we repeated Scenario 2 of the main text for three different values of k4 = 0,
k4 = 0.1, and k4 = 0.3, see Figure 2 of SI Text 1. The dissociation of the [RANKL/OPG] complex leads
to a slight decrease of the distance traveled by the cutting cone, but it also results in higher osteoclast
numbers in the cutting cone. Importantly, the qualitative impact of low to intermediate OPG production
on tumor burden remains unaltered (compare to Figure 5C in main text).

2 Numerics

2.1 Boundary Conditions

In [1,2], the simulations were performed on numerical domains that were large enough to avoid interactions
between the bone remodeling unit and the domain boundaries. Therefore, Dirichlet boundary conditions
in conjunction with spatial finite difference discretisations yielded good results. However, for the current
implementation of the model we used periodic boundary conditions. This choice facilitated the use of
spectral collocation methods for the discretisation of the Laplacian. In order to make sure that the size
of the domain did not affect the simulations, we first solved the equations on the original domain, then
doubled the domain size while keeping the mesh size constant, and eventually verified that the relative
difference between the two solutions was negligible.

2.2 Fractional Step Method

The model equations of Scenarios 1-5 share a common feature: they all involve multiple time scales and
hence suffer from stiffness, see e.g. [13]. In fact, the reaction and decay rates for the cytokines are of
the order of an hour, whereas the chemotactic motion of the remodeling front has a time scale of about
a week. If one were to perform a combined time-stepping for all state variables, the stiffness would
strongly suggest the use of an implicit method. However, since most terms in the equations are non-
linear, an implicit time-stepping would be very expensive. Furthermore the chemotactic term, essentially
hyperbolic in nature, is best tackled with an explicit method. These considerations lead us to solve the
model equations with a fractional step method as proposed in [14]. Given an evolution equation with
advective (A), diffusive (D) and reactive (R) contributions,

∂tq = A(q) +D(q) +R(q),

the fractional step method consists of a sequence of iterative integrations. More precisely, given the value
qn := q(tn), the method integrates the solution over ∆t in three steps:

1. Advection. Solve ∂tq = A(q) with initial datum qn over ∆t to obtain q∗

2. Diffusion. Solve ∂tq = D(q) with initial datum q∗ over ∆t to obtain q∗∗

3. Reaction. Solve ∂tq = R(q) with initial datum q∗∗ over ∆t to obtain qn+1.

The main advantage of this approach is that for each contribution one can choose the best suited numerical
method. For the advection step we used a second order centred difference scheme to discretize the spatial
derivatives of the chemotactic term in the osteoclast equation. The time stepping between t and t+ ∆t
was performed by means of the Matlab built-in adaptive Runge-Kutta 45 solver ode45. Regarding the
diffusion step we followed [14] and implemented TR-BDF2, an implicit Runge-Kutta method of second
order. As for the spatial discretization of the Laplacian, we implemented a standard spectral collocation
method, see e.g. [15]. Finally, the reaction step was integrated with ode45, similarly to the advection
step. Even though the reaction part is mildly stiff for some Scenarios, ode45 performed well. To ensure
that the employed numerical schemes were convergent, we performed convergence studies.
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3 Parameter estimation

Similarly to the approach described in Section 4.1 of [2], we distinguish between fixed and free parameters.
Fixed parameters are estimated based on experimental findings, whereas the remaining – a priori unknown
– free parameters are determined according to the following tuning strategy. While keeping the fixed
parameters unchanged, the free ones are tuned within a reasonable numerical range until the solution
matches the following in vivo observations: the remodeling front of active osteoclasts stays spatially
well-confined and moves across the trabecula at a roughly constant speed of 20 − 40 µm/day. In the
remainder of this section, we implement this strategy and discuss individual parameters. Except for the
parameters that vary from scenario to scenario, the values of fixed and free parameters are summarized
in (7) and (8), respectively.

In a first step we consider the osteoclast (u), RANKL (φR) bone (ρB) and tumor (ρT ) fields of Scenario
1, see equation (6) in the main text (ignoring the OPG and PTHrP fields). The parameters α, β and
g, corresponding to the internal dynamics of the osteoclast population, have already been determined
in [2] and are considered fixed. Since RANKL is assumed to be membrane bound, the experimentally
unknown effective diffusion rate σR should be at least one order of magnitude smaller than the diffusion
rates of soluble OPG and PTHrP (whose values are discussed below). Performing simulations with σR
more than one order of magnitude smaller than σO and σP leads to numerical instabilities as is to be
expected for an advection–dominated reaction–diffusion–advection system. In consequence, we choose
σR to be one order of magnitude smaller than σO and σP . If new experimental evidence would reveal
that σR is much smaller than assumed, our numerics would have to be reviewed. The remaining (free)
parameters in Scenario 1, namely k1, k2, λ, ζ and kB could not be matched to any experimental data
and hence we employed the tuning strategy outlined above.

For the additional fields appearing in Scenarios 2–5, namely OPG and PTHrP, as well as their
interactions with the RANKL and bone fields, we have the following fixed parameters. First, the diffusion
rates of OPG and PTHrP can be estimated from related experimental findings: in [16], effective diffusion
rates for Verteporfin in subcutaneous and orthotopic tumours were measured to be 0.88 and 1.59µm2 s−1

respectively. Assuming that the diffusion rate σ of a molecule of mass M scales as σ ∼ M−1/3, see
[17], we can use these rates together with the molecular weights of OPG as a dimer (∼ 120 kDa [18]),
PTHrP (∼ 18 kDa, [19]) and Verteporfin (∼ 0.7 kDa, www.drugbank.ca) to determine the range of
possible effective diffusion rates of OPG and PTHrP in tumour tissue. For OPG we obtain a range of
σO ∼ 1.4− 2.5 · 10−2mm2day−1 and for PTHrP σP ∼ 2.6− 4.7 · 10−2mm2day−1. For the present study,
we fix σO = 1.6 ·10−2 and σP = 3 ·10−2. Note that the chosen scaling law σ ∼M−1/3 applies to globular
molecules, but may not be accurate for rod-like molecules. Since OPG and PTHrP have both globular
and non-globular domains, a strict classification does not seem possible. Furthermore, we could not find a
reliable source for the long and short axes of the molecules (which appear in the scaling relations for rod-
like molecules), and hence we used the globular scaling relation to estimate the coefficients. Regarding
the half-life of OPG, experimental data range between 10 minutes in rats [20] and 4 days in monkeys [21].
Converted into reaction rates this gives us a ballpark of kO ∈ [0.6, 110] day−1. We decided to settle for
an intermediate order of magnitude by choosing kO = 10 day−1. Even though the half-life of PTHrP is
expected to be of the same order of magnitude as the one of OPG, we could not find any corresponding
experimental studies. Therefore, we treated kP together with the remaining parameters τO, τR, τP and
k3 as free parameters and used the tuning strategy.

In summary, the fixed parameters are (we abbreviate day by d)

α = 9.49mm−1/2d−1 β = 0.2 d−1 g = 0.5 σR = 0.5 · 10−2mm2d−1

σO = 1.6 · 10−2mm2d−1 σP = 3 · 10−2mm2d−1 kO = 10 d−1 κR = 1 d−1,
(7)

and the free parameters are

k1 = 0.3 d−1 k2 = 0.05 pmol d−1 λ = 13 pmolmm−1 ζ = 1.3 · 10−3mm3pmol−1d−1

kB = 3 d−1 k3 = 0.1mmdpmol−1 kP = 4 d−1.
(8)
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A final note on parameter sensitivity is in order. Given the large number of parameters in the model,
a systematic computational sensitivity analysis is not feasible. However, the sensitivity of the various
parameters has been investigated in several steps. (A) Parameter sensitivity of the osteoclast-internal
dynamics (production, apoptosis, autocrine stimulation) was assessed analytically in [22]. (B) Parameter
sensitivity for the underlying spatio-temporal model of bone remodeling was studied by means of scaling
arguments in [2]. (C) Sensitivity with respect to the parameters introduced in the current study (e.g.
cytokine production rates by tumor, parameters in the PTHrP field) was assessed computationally over
a wide range in parameter space.
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