
1

Supplementary Information

Supplementary Text S1

Joint and conditional joint dependence patterns of random variables
In this section we prove that no discrete random variables can have the joint and conditional joint dependence
patterns of conditional independence (Candidate Patterns 1 and 2).

Theorem 1. There are no such discrete random variables A, B,T for which the following set of dependencies are
all simultaneously true:

A 6⊥⊥ T (1)

B 6⊥⊥ T (2)

A ⊥⊥ T | B (3)

B ⊥⊥ T | A (4)

When all of P(A|B), P(B|A), P(A), P(B) have non-zero probabilities.

Proof. We will prove this theorem by contradiction. We start by assuming all four Equations 1 - 4 are true. In that
case, the joint probability P(A, B,T) can be written as:

P(A, B,T) = P(A,T |B)P(B) = P(B,T |A)P(A) (5)

Given Equations 3 and 4 we can rewrite this as:

P(A|B)P(T |B)P(B) = P(B|A)P(T |A)P(A) (6)

Now we use the property that P(A|B), P(B|A), P(A), P(B), and thus P(A, B) have non-zero probabilities. When
these are zero, the system reduces to trivial cases where either A and B are identical, or one of them is a constant.

We divide both sides of the equation by P(A, B) to obtain:

P(T |B) = P(T |A) (7)

We can repeat this derivation for various values of random variables A, B,T , and for any of these values we
would arrive to the same equation. Without loss of generality assume that A, B,T are binary. In that case for
A = 1, B = 1,T = 1 and A = 0, B = 1,T = 1 we get:

P(T = 1|B = 1) = P(T = 1|A = 1) (8)
P(T = 1|B = 1) = P(T = 1|A = 0) (9)

This implies that P(T = 1|A = 0) = P(T = 1|A = 1) which in turns implies that A and T are marginally
independent when T = 1. Same reasoning can be applied to the case when T = 0, thus showing that A and T
are marginally independent which contradicts the initial assumption that they are dependent (Equation 1). Similar
argument can be made for discrete variables with more than two values as well. �

The same theorem can be proven for conditional joint pattern of dependence. Both the formulation and the
proof are equivalent, but conditional on a set of variables.

We conjecture that the same theorem and reasoning might apply for continuous random variables as well.

2

Constraint-based algorithms
Conditional independence can be established at least in two ways: (i) by performing conditional independence
tests for subsets of variables, the approach taken by constraint-based network inference algorithms; and (ii) by
building a Bayesian Network for all the variables, the approach taken by score-based algorithms.

The PC algorithm is one of the first algorithms proposed for inference of Bayesian networks [15]. It is
constraint-based and builds a Bayesian network in two steps. In the first step (PC-skeleton), the algorithm starts
with a fully connected graph and then performs conditional independence tests of increasing order to delete edges.
This recovers the structure of direct and indirect dependencies, that is, the undirected network skeleton. In the
second step, edges are oriented using a set of rules.

Our algorithm uses a procedure similar to the PC-skeleton algorithm to distinguish direct from indirect de-
pendencies. However, it does not perform the second step as we are not interested in inferring causation. For
completeness, below we introduce the PC skeleton algorithm. With Ad j(X) we denote the nodes in a graph that
have an edge to X, i.e. adjacent nodes in a graph.

PC-skeleton algorithm
Input: DatasetD

1. Let n = 0.

2. Let G be a complete undirected graph with nodes representing variable fromD.

3. Repeat:

(a) For all pairs of variables (X,Y) connected with an edge inD test if they are conditionally independent given a
set of variables S of size n, where S ⊂ Ad j(X) or S ⊂ Ad j(Y). If they are conditionally independent, remove
the edge X − Y from the graph.

(b) Set n = n + 1 until no variable has greater than n adjacencies,or a stopping condition is satisfied.

4. Return G

The algorithm assumes the conditional independence test giving reliable results. In practice, a conditional
independence test, like a chi-square test, is used with a fixed P-value cut-off α (typically set to α = 0.05). This
cut-off specifies the Type I error (false positive) rate under the null hypothesis. The Type II error (false negative)
rate of conditional independence tests is harder to control for. This rate will depend on sample size, size of the
conditioning test, size of effects we wish to detect and the α value. Either the power can be estimated taking into
account these four factors, or the maximal size of the conditioning set (or data point per conditioning set) can be
capped [14]. The Type II error rate increases as the size of the conditioning set S increases, that is, the test looses
power as we condition on more variables.

More recently, a framework for general local learning (GLL) was proposed [13]. Instead of systematically
doing tests of increasing order, the Markov blanket for each of the nodes is found separately, and then a network
constructed by violating the smallest number of inferred Markov blankets. These algorithms have a forward and
backward phase, in the forward variables are added to the tentative Markov blankets of a node, and in the back-
ward conditional independence tests are used to remove false positives from the tentative Markov blankets. The
advantage of such an approach is that it separately finds the best local Markov blanket for each of the nodes, and is
thus less sensitive to error propagation through the network inference steps, like it is the case in the PC algorithm.

Detailed description of NCPC and NCPC* algorithms
Below we give a more detailed pseudo-code for the NCPC and NCPC* algorithms. A conditional independence
test Iα return either true if the P-value of the test is greater than α or false otherwise.

3

NCPC algorithm
Input:

• Matrix X with columns representing different variables (X1, X2, ...Xm) and rows representing observations.

• Column vector T of target variable values, with observations corresponding to those of X.

• Conditional independence test Iα (with a given α value threshold and optionally: a minimal number of observations
per set of values of in a conditioning set l).

• (Optionally) Maximal size of conditioning set k.

Algorithm:

1. Initialise a list of candidates of variables for direct dependence: C = {Xi : Iα(Xi,T) = false}

2. Let n = 1

3. Repeat:

(a) Enumerate all subsets Sn : {S : S ⊂ C ∧ |S| = n}

(b) For each Xi ∈ C and S ∈ Sn (Xi < S) test Iα(Xi,T |S) and save the result

(c) For each Xi ∈ C check if there is at least one S for which Iα(Xi,T |S) = true. If such S exists, remove Xi from
list of candidates C.

(d) Set n = n + 1.

(e) Break out of the loop if n > k or if n ≥ |C|

4. Mark all remaining variables in C as having direct dependence

5. Mark all variables removed in Step 3. as having indirect dependence

6. For each pair of variables Xi, X j marked to have indirect dependence, examine all pairs of tests performed in Step 3.
If a test pair is of form: Iα(Xi,T |{X j,S′}) = true and Iα(X j,T |{Xi,S′}) = true then mark this test pair as inconsistent.

7. If a variable Xi is removed only using inconsistent tests, then mark it as having joint dependence

8. Mark all remaining variables without any calls as having no dependence

9. Return calls for each of the variables in X

NCPC* algorithm
Input: (same as for NCPC algorithm)
Algorithm:

1. Initialise a list of candidates of variables for direct dependence with ordered pairs: Cd = {(Xi,∅) : Iα(Xi,T) = false}

2. Extend a list of candidate variables with ordered pairs (conditional dependent variable, conditioning set): C =

Cd ∪ {(X j, Xi) : Iα(X j,T |Xi) = false ∧ Xi ∈ Cd}

3. Let n = 1

4. Repeat:

(a) Enumerate all subsets Sn : {S : S ⊂ C ∧ ||S|| = n}. Since S consists of ordered pairs, ||S|| measure the number
of non-empty values in all pairs. E.g. ||{(Xi,∅), (X j, Xk)|| = 3.

(b) For each ordered pair (Xi, X j) ∈ C (X j can be ∅) and S ∈ Sn (Xi < S) test Iα(Xi,T |{X j,S}) and save the result

(c) For each (Xi, X j) ∈ C check if there is at least one S for which Iα(Xi,T |{X j,S}) = true. If such S exists,
remove (Xi, X j) from list of candidates C, together with all those ordered pairs where Xi is in the second
place in the pair.

(d) Set n = n + 1.

4

(e) Break out of the loop if n > k or if n ≥ ||C||

5. Mark all remaining pairs (Xi, X j) ∈ C as having direct dependence if X j = ∅ and conditional dependence otherwise

6. Mark all pairs (Xi,∅) removed in Step 3. as having indirect dependence

7. For each pair of ordered pairs variables (Xi, X j), (Xp, Xr) removed in Step 3, examine all tests performed in Step
3. If a test pair is of form: Iα(Xi,T |{Xp, X j,S′}) = true and Iα(Xp,T |{Xi, Xr,S′}) = true then mark this test pair as
inconsistent.

8. If an ordered pair (Xi, X j) is removed only using inconsistent tests, then mark it as having joint dependence if
X j = ∅ and conditional joint dependence otherwise

9. Mark all remaining variables without any calls as having no dependence

10. Return calls for each of the variables in X

We also implemented NCPC and NCPC* with multiple testing correction as suggested by [21] for the PC
algorithm. Briefly, at each iteration of step 3 in NCPC (step 4 in NCPC*), and for each candidate retained, a
list is kept of P-values from conditional independence tests given other candidates C. The maximum of these
P-values is used as the candidate P-value and multiple testing correction applied to these maximal P-values over
all candidates. At a predefined false discovery rate (FDR), candidates with adjusted P-values above the FDR
threshold are removed from the candidate set. This procedure controls the false discovery rate of edges with direct
dependence. Either the Benjamini-Hochberg [19] for independent tests or Benjamini-Yekutieli correction [20] for
dependent tests can be used.

5

Supplementary Figure S1-S15

6

Supplementary Figure S1. Proportion of correct predictions for the ”Hidden” scenario. Results in the same
format as Figure 4 but for the scenario ”Hidden”.

7

Supplementary Figure S2. Precision and recall for the ”Time” scenario. Precision and recall for the ”Time”
scenario. Precision is measured as TP/(TP+FP) and recall as TP/(TP+FN) where TP is the number of true
positives, FP number of false positives and FN number of false negatives. The best precision and recall rates are
shown in bold together with other values that are not significantly different (where the difference is smaller than
0.04 which is roughly two times the 95% confidence interval for these values)

8

Supplementary Figure S3. Precision and recall for the ”Hidden” scenario. Precision and recall for the
”Hidden” scenario. The format of this table is the same as that of Figure S2.

9

Supplementary Figure S4. Results in the ”Time” scenario with α = 0.01. Correct predictions, precision and
recall in the ”Time” scenario but by using α = 0.01 P-value cut-off. When we use this cut-off we recover the
expected high performance of the NCPC algorithm in the most correlated case. The best values and those not
significantly different are shown in bold.

Supplementary Figure S5. Results in the ”Hidden” scenario with α = 0.01. Correct predictions, precision and
recall in the ”Hidden” scenario but by using α = 0.01 P-value cut-off. When we use this cut-off we recover the
expected high performance of the NCPC algorithm in the most correlated case. The best values and those not
significantly different are shown in bold.

10

Supplementary Figure S6. Causal neighbourhood marked with rectangles and marginal dependence
colour-coded for the mesodermal dataset. The layout of these plots is same to that of Figure 4 of the original
paper where the data has been first published [18]. The colour-coding of marginal dependence is same as in
Figure 6. The numbers represent fold difference for binding of TFs in each of the classes. For instance, in the
”Meso” CRMs, Twi 2-4h is bound 1.83 times more frequently than in the rest of the CRMs. With solid rectangles
we mark those combinations of TFs and time points that are in the causal neighbourhood of a CRM class (direct
or joint dependence). The last figure summarizes the causal neighbourhoods for the 5 CRM classes. With ”x” we
mark those TF/time interval combinations which are not in causal neighbourhood of any of the CRM classes.

11

Supplementary Figure S7. DDGraph for results of NCPC* on 5 CRM classes of mesoderm at α = 0.05. The
result is the same as Figure 6 with the exception of Meso and VM&SM classes. For the Meso class we find two
additional variables with conditional joint dependence. Following our results on synthetic data we discard them as
false positives. For the VM&SM class we find that Bin 10-12h has not only joint dependence, but also conditional
dependence (when conditioning on Twi 2-4h). This further confirms that Bin 10-12h is a member of the Markov
blanket of VM&SM CRM class.

12

Supplementary Figure S8. Hill-climbing with BIC penalization applied to the 5 CRM classes. BIC
penalization has a high false negative rate and it tends to finds subsets of variables we find with NCPC. However,
in case of the SM class the variable picked to be the only causal parent does not make biological sense.

13

Supplementary Figure S9. Hill-climbing with BDe penalization applied to the 5 CRM classes. BDe
penalization has a high false positive rate and it tends to finds supersets of variables we find with NCPC.

14

Supplementary Figure S10. IAMB applied to the 5 CRM classes at α = 0.05. IAMB finds similar, but
sometimes seemingly wrong causal neighbours. For instance, for Meso it finds that Bin 10-12h has direct
dependence (being causal child to Meso CRMs), while Twi 2-4h is a causal spouse, and thus independent of Meso
CRMs. However, the situation is exactly reverse, Bin 10-12h being independent of Meso CRMs and Twi 2-4h
having strong dependence on Meso CRMs. For VM and SM IAMB doesn’t find any variables that directly
influence these CRMs.

15

Supplementary Figure S11. FastIAMB applied to the 5 CRM classes at α = 0.05. Fast IAMB compared to
IAMB finds variables that further violate the dependencies found in the data.

16

Supplementary Figure S12. InterIAMB applied to the 5 CRM classes at α = 0.05. InterIAMB finds variables
similar to other IAMB class of algorithms. In case of Meso it also doesn’t find Twi 2-4h as having direct
dependence.

17

Supplementary Figure S13. PC algorithm applied to 5 CRM classes at α = 0.05. In 3 out of 5 cases the class
labels node is disconnected to the graph, although it is clearly related to other features, as denoted by node
colouring based on simple enrichment.

18

Supplementary Figure S14. MMHC with BIC penalization applied to the 5 CRM classes. Consistent with
our results on synthetic data MMHC has the highest false negative rate, and in 4/5 cases the CRM class is
disconnected in the graph.

19

Supplementary Figure S15. MMHC with BDe penalization applied to the 5 CRM classes. Consistent with
our results on synthetic data MMHC has the highest false negative rate, and in 4/5 cases the CRM class is
disconnected in the graph.

