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Example of parameter estimation through the Kalman
filter

In this section we aim at giving more insights on the use of the Kalman filter
and stochastic modeling to the estimation problem of parameters. To this end,
we consider a simplified version of the half-life estimation problem, namely that
of estimating the decay rate of a first order system with an unknown input. The
system we consider here can be described as

ẋ(t) = −Kx(t) + u(t) (1)
y(t) = x(t) + σyn(t). (2)

Here, x(t) is the scalar variable that corresponds to the system evolution,
whereas y(t) is the available measurement of x(t) and it is affected by a measure-
ment noise σyn(t). The system input chosen in this example is u(t) = A sin(ωt),
but it is unknown and thus we assume that it is not possible to use its value
to estimate the unknown parameter K. Notice that the measurement equation
contains a stochastic term. We suppose to know σy and the output sequence
y(t) at discrete time points. In figure the time courses of x(t) and y(t) are
plotted for the following choice of parameters: K = 0.0087, that corresponds to
a half-life h = log(2)/K = 80, ω = 0.2, A = 0.05, σy = 0.10, and sampling time
∆ = 1.

Since we require that the Kalman filter cannot use the true u(t), the input
can be modeled as stochastic process. In particular, every possible trajectory of
u(t) is modeled as a realization of a Wiener process, thus we can rewrite system
(1)-(2) in the appropriate stochastic formalism as

dxt = −Kxtdt+ σxdW
1 (3)

dyt = xtdt+ σydW
2, (4)

where dW 1 and dW 2 are two independent Wiener processes. In other words,
the equations used to generate the time series to analyze are (1)-(2), whereas
the equations used to build the filter are (3)-(4).

Since we assume that measurements are taken at discrete intervals, we inte-
grate (3)-(4) in the interval ∆. The resulting discrete-time system is

x(k + 1) = −AKx(k) + FNk
x (5)

y(k) = x(k) +GNk
y , (6)
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Figure 1: A sample evolution of the system: comparison of real value x(t),
measured value y(t), and the value x̂(t) estimated by the Kalman filter, all
sampled every unit of time. Here K = 0.0087, K̂ = 0.0080.

where Nk
x and Nk

y are independent random variables with normal distribution.
Straightforward derivations yield AK = e−K∆ and, for the amplitudes of the
noises F and G,

F = Ψ
1
2 (7)

Ψ = σ2
x

∫ ∆

0

e−2Kθdθ =
σ2
x

2K
(
1− e−2K∆

)
(8)

G = σy. (9)

Notice that in order to have all the parameters we need σx, the amplitude of
the input random process that we use in the place of u(t). Even if in general σx
may be an unknown parameter to estimate in the same way as K, to keep the
example simple we suppose instead that σx is known, and we compute it as the
average energy of the input u(t)

σ2
x =

1
2π

∫ 2π

0

(A sin(ωt))2
dt. (10)

With this choice σxdW 1 will have the same average quadratic amplitude as u(t),
and this is equivalent to saying that we do not know u(t) but only its average
energy. With the values used here, we have σx = 0.0258 (of course the method
should work even if an approximate estimate of σx is used instead of the true
value).

For each choice of the unknown parameter K we are equipped with all the
parameters AK , F and G occurring in equations (5)-(6), thus we can write the
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equation of the standard Kalman filter for the variable x̂(k) which is the filter
estimate for x(k), as

x̂(k + 1) = AK x̂(k) + K̄∞ (y(k + 1)−AK x̂(k)) . (11)

The first term in the right-hand side is a projection of x̂(k) one step farther,
whereas the second term is a correction based on the comparison between the
measured value y(k + 1) and the predicted value AK x̂(k). This correction is
multiplied by the Kalman gain K̄∞, which is computed only once solving the
equations

K̄∞ = P∞/G
2 (12)

P∞
(
1 + (A2

KP∞ + Ψ)/G2
)

= A2
KP∞ + Ψ, (13)

where P∞ is the steady-state covariance of the estimation error e(k) = x(k) −
x̂(k), that is, P∞ = limk→∞E(e2(k)), where E() denotes the expected value.
Solving (12) we obtain K̄∞ and we can implement the Kalman filter (11) for
each choice of the unknown parameter K. We still need a likelihood functional
whose maximum corresponds to the value of K that is most likely given the
measurement sequence y(k). To this end, we consider the innovation process
ν(k), defined as

ν(k + 1) = y(k + 1)−Akx̂(k), (14)

which is the difference between the real and predicted measurement. Based on
results of the theory of stochastic processes, we have that ν(k) is a random vari-
able with normal distribution. The steady state variance of the corresponding
stochastic process Ψν

∞ = limk→∞E(ν2(k)) can be computed and it is

Ψν
∞ = P∞ +G2. (15)

Notice that for each choice of K we can now compute the sequences x̂(k) and
ν(k), for k = 1, . . . , N , where N is the umber of sampled measurements. The
likelihood functional that we use to find K is the probability that the sequence
ν(k) obtained for a given choice of K is indeed a random variable with the
predicted variance Ψν

∞. That is we use the likelihood functional V (K) defined
as

V (K) =
N∏
i=1

1√
2πΨν

∞
e
− ν

2(k)
2Ψν∞ . (16)

An optimization algorithm is used to find the maximum of V (K) over a range
of K. For the numerical simulations of this example we have chosen K ∈
[0.0069, 0.6931], corresponding to a range of half-lives [1, 100]. Figure illus-
trates the predicted x̂(k) of the Kalman filter for one trace generated from the
equation (1)-(2). In this case, the optimization found the value K̂ = 0.0080,
corresponding to a half-life 86.9, while the true value was K = 0.0087 (half-life
80.0).

Robustness of the DRAGON estimates

The algorithm uses two thresholds (step 3 in the Materials and Methods section)
for the selection of the elements mij in the ratio matrix M. It is important to
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verify their impact on the resulting estimates. We briefly comment on this,
comparing the Pearson correlation between our estimation of half-lives and the
measurements of Shock et al. for P. falciparum when these thresholds are
changed. The first threshold is a probability value used to delete the elements
mij in the tails of the distribution. Actually, this is a safeguard against values
completely out of range due to numerical artifacts generated by the optimization
algorithm. We found no significant difference in the Pearson correlation when
this threshold was 0 (no mij deleted). The second threshold is on the range
of the product mij ·mji. A value close to 1 indicates that the same maximum
has been found for the likelihood functional when swapping the time series. A
product far from 1 indicates that two distinct maxima have been found, and
the information related to that pair of time series is probably not useful and it
should be discarded. The threshold is denoted as k, and the admissible interval
must be in the range [1/k, k]. In the case of the P. falciparum dataset, with
k =∞ (no selection of matrix elements), we get a Pearson correlation 0.41 (P-
value 10−25) instead of 0.6 (P-value 10−61) obtained with k = 1. Larger values
of k have lesser effect: with k = 2 the correlation drops only to 0.53 (P-value
10−43). We can conclude that deleting non symmetric entries of M is indeed
important but the precise tuning of the parameter is not crucial in order to get
reliable estimates.
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