
Exploration of the parameter space

In order to assess the robustness of the results presented in the main text, we have per-

formed an extensive exploration of the parameter space. Modifying further the mortality

functions does not provide qualitatively new mortality patterns, as shown in figure S1,

A and B. Changing the initial mortality (µ0) in the HRM and the HTM does not al-

ter either the conclusions of the model: a limited set of mortality curves emerge from

the evolutionary algorithm as shown in figure S1, C and D. As detailed below, we have

also run simulations (i) modifying the mutation process on α and (ii) including extrinsic

mortality. These two other versions of the algorithm also lead to the same conclusions

as those presented in section "Transitions in mortality curves" (main text). Finally, the

equivalent deterministic model described below also yields the same conclusions that the

models presented in the main text.

• Polynomial dependency on α: µ(t, α) = µ0α
nekt where n is an integer, bigger than

one.

• Concave dependency on α: µ(t, α) = µ0α
aekt where a is a real number, strictly

between zero and one.

Different mutations for α : In the different versions of the model presented in the

main text, the effect of a mutation on α is to assign a new random value, drawn uniformly

between zero and one. Here, we present the same model where mutations consist in

perturbing the previous value of α. More precisely, if a mutation occurs, the new value

for α is drawn following a Gaussian distribution, centered around the previous value.

We have implemented different standard deviations, and none of these versions lead to

different conclusions than the models presented in the main text (see figure S2 for a

standard deviation of 0.3).

Addition of an Extrinsic mortality : Extrinsic mortality is simulated as a source of

mortality independent of age and α. In terms of numerical implementation, an expected

time of death is drawn according to the method described in the Methods section (main

text) for the intrinsic mortality and another for the extrinsic mortality (from an expo-

nential distribution with a constant parameter λ). The smaller of the two times is taken
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to be the lifespan of the individual. Figure S3 shows the transitions in mortality curves

for λ = 0.01.Changes in λ over generations have different effects. On the one hand, if λ

is varying slowly compared to the convergence of population heterogeneity, say changes

every 50 generations, then one would observe that the distribution of α is converging from

one stationary distribution to the other. On the other hand, if λ is varying quickly, say

between two values at every generation, then the resulting distribution of α is a mixture

of the two stationary distributions.

Deterministic model : As stated in the main text, the deterministic model produces

the same transitions in mortality curves as the stochastic model (see figure S4).

Sexual reproduction : It is possible to introduce other types of reproduction in the

model presented in the main text. For instance, sexual reproduction would consist in

picking randomly two parents and combining their α to produce an offspring. One intuitive

way to do it is to have the offspring’s α be an average of the parents’. Running simulations

with sexual reproduction implemented produces the same set of mortality patterns than

the one described in the main text (see figure S5). One could note as well that the

distribution is more centered around the mode as the tail decreases towards α = 1.

Maturation time : Maturation time can be introduced in the model by preventing

reproduction to occur before a predetermined time tr. Setting a such a window during

which reproduction can occur, disfavors the high α. Indeed, the first reproductive events

are mainly accomplished by α close to 1. As a result, the distributions after evolution

show that the region close to 1 is more depleted in individuals. Yet, the corresponding

mortality patterns are qualitatively similar to those observed with the other versions of

the model (figure S6): the results are once again robust to such modifications of the

model.

Heterogeneity arising during development : Implementation of maturation does

not exactly modifies the initial adult heterogeneity. If one wants to account for specific

developmentally induced heterogeneity, the deterministic model can be modified as fol-

lows. Keeping the notations from the main text, the stationary distribution of α, Dα, is

now implicitly defined by the relation : Dα = T (C(Dα)) where T is the operator defined
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in the main text and C is the operator describing the changes occurring during develop-

ment in terms of heterogeneity. One interpretation of C could be for instance that low

α fail to develop properly (because the process is too slow for instance) and therefore, C

would enhance the frequency of high α in the population over the developmental period.

Describing what could be a potential C is beyond the scope of the present paper. Yet,

the mathematical framework is ready to be studied in the light of experimental data.

Maintaining heterogeneity

Maintaining population diversity

In this model, two phenomena contribute to maintain population heterogeneity: muta-

tions and time-dependent competition.

A non zero mutation rate is expected to maintain a certain minimal diversity in the

population. Yet, the expected distribution would show a peak at the optimal strategy

(optimal α here) and be uniformly distributed elsewhere as mutations do not favor specific

strategies. In the absence of mutations, population heterogeneity quickly moves from the

initial uniform distribution to peak around one value of α (HRM). The key observation

here is that the depletion occurring for high α is slower than the depletion for small α. In

only three generations, there is no α left close to zero while a significant fraction remains

close to one. This asymmetry can be explained by the reproduction process: high α

always have a chance to reproduce at early ages because they are most likely to be alive,

even if for a short period of time. During this small time-window, there is a chance that

they would reproduce which is significantly higher than for small α. Second, the depletion

around α = 1 gets slower with generations. One way to represent the effect of mutations

in figure S7 is to shift the whole distribution up and make it more flat. Therefore, at

some point this shift and flattening exactly compensates the depletion in high α: the

distribution stabilizes before reaching a single peak and presents an asymmetry between

low α and high α.

The same phenomenon also occurs in the case of heterogeneity in aging timing but is

no longer prevalent. As shown in figure S8, under low mutation rates, the distribution

of α continues being bimodal in the HTM. Heterogeneity is maintained here because of
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the time-dependent competition. The key idea is that the competition for reproduction

depends on the individual alive at a given time. From the point of view of an individual

with a small α value, competition is really strong at early ages because it competes with

high α individuals. As time goes on, these individuals die out and the probability to

reproduce increases for this individual. In sum, the optimal strategy changes with time.

Mathematical toy model Here, we derive a toy model to illustrate how traits in

competition can be simultaneously maintained in a deterministic model. Let us consider

a population of infinite size in which l traits are coexisting initially in equal proportions.

Each trait i is characterized by a reproductive success ai and a mortality function, which

depends on its age. We are interested in the evolution of the vector X(n) = () where

xi(n) is the proportion of individuals with trait i in the population at the generation n.

To illustrate our point, we consider a discrete time here which corresponds to discrete

instants for reproduction of the alive individuals.

Single time point for reproduction: In the case of a single reproduction opportunity,

there is no aging occurring. Therefore, we can write:

xi(n+ 1) =
aixi(n)∑k
j=1 ajxj(n)

. In this set-up, with X being the vector containing all xi, we have

lim
ng→+∞

X(ng) = (0, . . . , 0, 1, 0, . . . , 0)

The 1 is simply located at the position corresponding to the highest ai: in the absence

of damage accumulation, higher investment in reproduction is the single strategy which

invades the population. In a word, there is no coexistence possible in this competitive

set-up.

Two time points for reproduction: Let us consider now two distinct times to reproduce.

In between these two time points, individuals investing heavily in reproduction would die

more than individuals investing heavily in maintenance, thus changing the competition

set-up at the second time-point. For the sake of simplicity, let us consider two traits

in competition. Each trait i is described by a parameter ai and two parameters s1i and

s2i which describe the survival at the two time points considered. Individuals with the
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first trait invest in reproduction, so that a1 = 1, but die off quickly (s11=1 and s21=0).

Individuals with the second trait favor more maintenance, and therefore a2 < a1, s12=1

and s22>0. The evolution of population heterogeneity is described by:


x1(n+ 1) =

µx1(n)

x1(n) + a2 x2(n)
+ 0

x2(n+ 1) =
µ a2 x2(n)

x1(n) + a2 x2(n)
+ (1− s22)

(1)

This set of differential equations depict a competition between traits 1 and 2 yet exhibit

an equilibrium point at which both traits coexist. Indeed, the possible equilibria of this

system are:


x∗1 =0 & x∗1 = 1− 1− s22

1− a2

x∗2 =1 & x∗2 =
1− s22
1− a2

(2)

In sum, two features contribute to maintain population heterogeneity in or models.

First, we show that heterogeneity can be maintained because of stochastic processes in a

non-symmetric manner. Second, we find that time-dependent competition can lead to a

stable coexistence of multiple competing traits.

The Jacobian matrix of the system for the non-trivial equilibrium point is:

µa2
S2
a2

 x∗2 − x∗1

−x∗2 x1


where Sa2 = x∗1 + a2 x

∗
2 = (s22)

2. Therefore, the non-zero eigenvalue of this matrix is

a2
s22
. This ensures that this equilibrium is stable.

Three times competition: Here, we have three traits in competition and three

times to compete. We denote ai the reproductive success of each trait during the first

opportunity to reproduce, and bi during the second. Once again, we assume that trait 1

favors reproduction more than trait 2, which itself favours reproduction more than trait

3, the opposite being true for survival. With these notations, the system can be rewritten

as:
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

x1(n+ 1) =
s11 x1(n)

x1(n) + a2 x2(n) + a3 x3(n)

x2(n+ 1) =
s12 a2 x2(n)

x1 + a2 x2 + a3 x3
+

s22 b2 x2(n)

b2 x2(n) + b3 x3(n)

x3(n+ 1) =
s13 a3 x3(n)

x1 + a2 x2 + a3 x3
+

s23 b3 x3(n)

b2 x2(n) + b3 x3(n)
+ s33

(3)

For the sake of simplicity, let us assume that s22 = s23. The equilibrium corresponding

to x∗1 6= 0, x∗2 6= 0 and x∗3 6= 0 is:



x∗1 =1− x∗2 − x∗3

x∗2 =
s22

1− a2
− b3
b2
x∗3

x∗3 =
s33

1− a3 − b3
b2

(1− a2)

(4)

Of course, x∗1, x∗2 and x∗3 have to be between 0 and 1, which leads to the following con-

straints (with β = b3
b2
, ā2 = 1− a2, ā3 = 1− a3 and c = ā3 − βā2):


c > s33

0 <s22c− β ā2 s33 < ā2 c

0 <s22c+ (1− β) ā2 s
3
3 < ā2 c

(5)

If we set sji = 1/3 and a2 = 1/2, then the above conditions reduce to:



c >β ā2

c > 1/3

c >1− β

c <1− β ā2

(6)

All the conditions of the system can be satisfied by a set of values for the couple (c, β)

which corresponds to the grey area in figure S9. The coexistence of all three traits in the

population is therefore possible.
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