
Supplementary Text S1: Model formulation
Identifying transmission cycles at the human-animal interface:

The role of animal reservoirs in maintaining
gambiense Human African Trypanosomiasis

Sebastian Funk, Hiroshi Nishiura, Hans Heesterbeek,
W. John Edmunds, Francesco Checchi

Contents

1 General setup 2
1.1 The next-generation matrix . . . . . . . . . . . . . . . . . . . 2
1.2 Determining independent transmission cycles . . . . . . . . 3

2 Model scenarios for HAT 5
2.1 Random mixing . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Correlated bites . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Interaction rates from habitat overlap . . . . . . . . . . . . . 12

3 Model extensions 13
3.1 Incubation period . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Teneral flies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References 15

1



1 General setup

We are dealing with n host species labelled a = 1 . . . n, andm vector species
labelled v = 1 . . .m. We are trying to evaluate which species or combina-
tions of species can maintain infection (Haydon et al., 2002).

We will employ the following notation conventions: matrices will be
denoted by bold capital latin letters (e.g., K), counts by normal capital let-
ters (e.g., N ), rates by small greek letters (e.g., ξ), probabilities and propor-
tions by small latin letters (e.g., i). Measurable rates or probabilities will be
typed in bold (e.g., µ) and ones estimated or unkown in normal font (e.g.,
bv). Equilibrium quantities will be denoted with an asterisk (e.g., i∗). Host
species will be labelled a, b, . . . and vector species v, w, . . . Eigenvalues will
be labelled λ (not to be confused with forces of infection on hosts λa and
vectors λv).

1.1 The next-generation matrix

The next-generation matrix (NGM) is a quantity that provides a link be-
tween the number of new infected in each generation of infection in dif-
ferent host (or vector) types or species. The elements of the NGM denote
the average number of infections caused by a single infected host (vector)
in a completely susceptible population of the same or another host (vector)
species. Following Diekmann et al. (2010), we can calculate the NGM after
decomposing the Jacobian matrix of the system into a transmission part T
and a transition part C

K = −TC−1 (1)

In the case of a vector-borne disease and in the absence of vertical trans-
mission, the transmission matrix T is of the form

T =

(
0 TVH

THV 0

)
(2)

where TVH is an m × n matrix of transmission terms from the host to the
vector and THV is an n ×m matrix of transmission terms from the vector
to the host. The transition matrix C is of the form

C =

(
CV 0
0 CH

)
(3)

where CV is a matrix of terms describing mortality of the vector species and
CH is a matrix of terms describing recovery and mortality of the different
host species. Since the inverse of a block diagonal matrix is a block diagonal
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matrix of the inverses of the blocks, the NGM is of the form

K = −TC−1

=

(
0 TVH

THV 0

)((
CV
)−1

0

0
(
CH
)−1
)

=

(
0 TVH

(
CH
)−1

THV
(
CV
)−1

0

) (4)

If there is no vertical transmission, the NGM K for a vector-borne dis-
ease will only ever contain two blocks of elements denoting transmission
between the host and vector.

K =

(
0 KVH

KHV 0

)
(5)

where KVH is a (sub-)matrix containing only elements for host-to-vector
transmission, and KHV contains only elements for vector-to-host transmis-
sion. The eigenvalues λ of that matrix can be found by solving

0 = det(K− λ1(n+m))

= (−λ)n−m det
(
−λ21m +KVHKHV

) (6)

where 1x is the x-dimensional unity matrix. In other words, the non-zero
eigenvalues of K are the square roots of the eigenvalues of them×mmatrix
KVHKHV.

1.2 Determining independent transmission cycles

In a multi-host system, the basic reproduction number R0 is defined as
the spectral radius of K, and for a vector-borne disease without vertical
transmission it is given by

R0 = ρ(K) =
√
ρ(KVHKHV) (7)

It represents a threshold in that an infection can establish itself in a suscep-
tible population if R0 > 1. Usually, this is also the condition for persistence
(see Linear Stability Analysis below).

To determine reservoirs, we calculate the host-specific (U ) and host-
excluded (Q) reproduction numbers (Roberts and Heesterbeek, 2003; Ni-
shiura et al., 2009)

UV
A = ρ((PV +PA)K) (8)

and
QV

A = ρ((PV + 1V −PA)K) (9)
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where ρ(A) is the spectral radius of matrixA, PA is some projection matrix
selecting for a set of (one or more) species that we are interested in, and the
vector projection PV and vector-excluded unity matrix 1V are defined as

PV =


1m 0 · · · 0

0 0
...

...
...

...
. . . 0

0 · · · · · · 0

 and 1V = 1m+n −PV (10)

A species a is a maintenance host species if UV
a > 1 and a reservoir species

if, in addition, QV
a < 1. The analogue holds for groups of host species (Ni-

shiura et al., 2009).
We now consider the case where there is only one vector species v. In

that case, we have m = 1 and KVHKHV is a 1x1 matrix. Writing KVH
a , and

KHV
a for the elements KVH

1a and KHV
a1 of the one-dimensional matrices KVH

and KHV, respectively, we get

KVHKHV =
n∑

a=1

KVH
a KHV

a (11)

where KVH
a can be interpreted as the average number of infected vectors

caused in a completely susceptible vector population by a single host of
species a, and KHV

a as the average number of infected hosts of species a
caused by a single vector in a completely susceptible host population. In
this case, the basic reproduction number is

R0 =

√√√√ n∑
a=1

KVH
a KHV

a (12)

If we are interested in the role of species a, we get (writing a for the set {a})

UV
a = ρ((PV +Pa)K)

= ρ



0 · · · KVH
a · · · 0

...
. . .

...

KHV
a 0

...
...

. . .
...

0 · · · · · · · · · 0


=
√
KVH

a KHV
a

(13)
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and

QV
a = ρ((PV + 1V −Pa)K)

= ρ



0 KVH
1 · · · KVH

a−1 0 KVH
a+1 · · · KVH

n

KHV
1 0

... 0
... 0

... 0
...

...
. . .

...
...

...
...

...

KHV
a−1 0 · · · . . . · · · · · · · · ·

...

0 · · · · · · · · · . . . · · · · · ·
...

KHV
a+1 0 · · · · · · · · · . . . · · ·

...
...

...
...

...
...

...
. . .

...
KHV

n 0 · · · · · · · · · · · · · · · 0


=

√∑
b6=a

KVH
b KHV

b

(14)

2 Model scenarios for HAT

In the following, we will develop different versions of a simple transmis-
sion model of HAT, starting with the simplest version before discussion
possible extensions.

2.1 Random mixing

In the simplest model, we assume that bites are uncorrelated and the prob-
ability of biting any host species is independent of which species was bitten
previously by the same vector.

Dynamic system

The system is described by (n+m) differential equations:

dIa
dt

= λa(Na − Ia)− (µa + γa)Ia (15a)

dIv
dt

= λv(Nv − Iv)− µvIv, (15b)

where µv and µa are the natural death rates of vector species v and host
species a, respectively, γa is the rate at which host a loses infectiousness
(through recovery or death). Ia/v, and Na/v are the infected and total pop-
ulation sizes in host species a and vector species v, respectively, and λa
and λv are the forces of infection acting host species a and vector species v,
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respectively. The population size is assumed to be constant, so that the dy-
namics of the susceptible classes Sa = Na − Ia and Sv = Nv − Iv are fully
described by the behaviour of the infected classes Ia/v.

Forces of infection

The forces of infection can be written as

λa =
∑

vector species v

bavτvfav
1

Na
Iv =

∑
vector species v

bavτvfav
Nv

Na
iv (16a)

λv =
∑

hosts species a

bvaτvfav
Ia
Na

=
∑

hosts species a

bvaτvfavia (16b)

where bav is the probability a susceptible host of species a gets infected
when bitten by an infected vector of species v, bva is the probability a sus-
ceptible vector of species v gets infected when biting and infected host of
species a, τv is the biting rate of vector v and ia/v = Ia/v/Na/v the preva-
lence of the parasite in host species a and vector species v, respectively. The
factor fav is the proportion of all bites by vector v taken on species a.

These forces of infection can be interpreted as follows:

λa =
∑

vector species v

(probability of a bite from an infected vector of species v on a host

of species a transmitting infection to the host)

(biting rate of vector species v)

(probability of a bite of vector species v being on host species a)

(probability of each host to be bitten among all hosts of species a)

(number of infected vectors of species v)

λv =
∑

hosts species a

(probability of a bite from a vector of species v on an infected host

of species a transmitting infection)

(biting rate of vector species v)

(probability of a bite of vector species v being on host species a)

(probability of a bite on host species a being on an infected host)

The last term is asymmetric between vectors and hosts, because it is the
vectors who actively seek out hosts at their biting rates.

Note that if the vector took bites randomly proportional to the popula-
tion sizes of each host species, this would cancel the Na term in Eqs. (16).
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More generally, we would expect fav to approach zero at least as fast as
Na if populations were to diminish, so the forces of infection would not
diverge.

Dividing Eqs. (15) by the population sizes Na and Nv, respectively, and
setting the left-hand sides to zero (i.e., assuming the system is in equilib-
rium), we can calculate the forces of infection from the (measured) preva-
lences i∗a and i∗v:

λ∗a =
i∗a

1− i∗a
(µa + γa) (17a)

λ∗v =
i∗v

1− i∗v
µv (17b)

Linear stability analysis

Linearising the system given by Eqs. (15) around the disease-free equilib-
rium confirms R0 given by Eq. (12) as invasion threshold. Numerical inte-
gration of the system around the endemic state reveals that the same value
of R0 is also a threshold for maintenance, that is the system does not have
a backward bifurcation (Hadeler and van den Driessche, 1997).

Estimating transmission probabilities

We can use Eqs. (16) and (17) to estimate the transmission probabilities bav
and bva if we assume that they depend solely on the susceptibility of the
target of host or vector exposed to the parasite. In that case, we can write
bav = ba and bva = bv. The forces of infection are then

λa =
ba
Na

∑
vector species v

τvfavNviv (18a)

λv = bvτv
∑

hosts species a

favia (18b)

Equating these to Eqs. (16) yields (n + m) equations for the n + m trans-
mission probabilities ba and bv. To solve these we would need to know
the number of vectors Nv of each species v and the number of hosts Na

of each species a, which are difficult to measure. If we know the relative
population sizes nv = Nv/N

V and na = Na/N
H, that is the fraction of all

vectors that are of species v and the fraction of all hosts that are of species a
(NH =

∑
Na being the total number of hosts and NV =

∑
Nv the total

number of vectors in the system), we can rescale

b̂a = ba
NV

NH
(19)

7



yielding

λa =
b̂a
na

∑
vector species v

τvfavnviv (20a)

λv = bvτv
∑

hosts species a

favia (20b)

Assuming the system is in equilibrium, we can equate this to Eqs. (17) to
get

i∗a
1− i∗a

(µa + γa) =
b̂a
na

∑
vector species v

τvfavnvi
∗
v (21a)

i∗v
1− i∗v

µv = bvτv
∑

hosts species a

favi
∗
a (21b)

which are (n + m) linear equations for the (n + m) variables b̂a and bv.
Solving for these, we get

b̂a =
i∗a

1− i∗a
na(µa + γa)

 ∑
vector species v

τvfavi
∗
v

−1 (22a)

bv =
i∗v

1− i∗v
µv

τv

 ∑
hosts species a

favi
∗
a

−1 (22b)

Determining reservoirs

The elements of the transmission matrix T are (see Eq. (2))

TVH
va =

λvaNv

Ia
= bvτvfav

nv

na

NV

NH

THV
av =

λavNa

Iv
= b̂aτvfav

NH

NV

(23)

and the non-zero elements of C are on the diagonal

CV
v = −µv

CH
aa = −µa − γa

(24)

Since C is diagonal, the elements of C−1 are simply the inverses of the
corresponding elements of C.
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The elements of KVHKHV are then(
KVHKHV

)
vw

=
∑

hosts species a

KVH
va K

HV
aw

= bvnv

∑
hosts species a

b̂aτvτwfavfaw
µw(µa + γa)na

(25)

If there is only one vector species v, we can calculate the contribution of
each host species a to R0 to

KVH
a KHV

a =
bv b̂aτ

2f2
anv

µv(µa + γa)na

=
1

(1− iV∗)(1− i∗a)
i∗afa∑

hosts species b i
∗
bfb

(26)

where we have made use of Eqs. (22), and of the fact that all fractionsNa/Nk

can be replaced by the measurable na/nk, the relative population sizes of
two species (note that b̂a contains the ratio of vectors to hosts,Nv/NH ). The
basic reproductive number is (see Eq. (12))

R0 =

√√√√ ∑
hosts a

bv b̂aτ 2f2
anv

µv(µa + γa)na
(27)

which is similar to previous basic reproduction numbers given for HAT
from similar models (Rogers, 1988; Artzrouni and Gouteux, 1996).

Given prevalence and biting preference, on the other hand, the basic
reproduction number is

R0 =

√√√√√ 1

1− iV∗

 ∑
hosts species a

i∗a
1− i∗a

fa

 ∑
hosts species a

i∗afa

−1 (28)

The relative contribution of a species with low prevalence is equal to the
product of prevalence and fraction of bites on that species:

KVH
a KHV

a∑
bK

VH
b KHV

b

=
i∗afa
1− i∗a

= i∗afa + o(i∗a)
2 (29)

2.2 Correlated bites

Eqs. (2) contain the assumption that every bite has a chance of being on any
of the species given by the set of probabilities fav. We will now consider a
scenario in which bites are correlated in the sense that a vector having fed
on a host of species a could be more likely to feed on another host of the

9



same species a than the other hosts species. To include this in our model,
we introduce a parameter ξ that denotes the strength of this correlation.

Dynamic system

To capture the impact of correlated bites on model dynamics, we separate
our vector classes Iv according to the host species a last bitten by the vector,
and denote these Iva, the number of infected vectors of species v that have
last fed on host species a. If ξ−1 is the average time spent feeding on a
given species, the dynamical equations for the fraction of vector species v
currently feeding on host species a are

dnva
dt

= −ξnva +
∑

hosts species b

ξnvbpva

= −ξnva + ξpva

(30)

where pva is the probability that an uncorrelated bite of vector species v is
on host species a, normalised to

∑
a pva = 1. In equilibrium we have nva =

pva. If we demand that in equilibrium nva corresponds to the measured
fraction fav of bites a vector species v inflicts on host species a, this means
that

pva = fav (31)

The dynamical equations for Iva are therefore

dIva
dt

= λva(Nva − Iva)− µvIva − ξIva +
∑

hosts species b

ξIvbfav (32)

Forces of infection

Dividing by Nva yields the relation between prevalence and force of infec-
tion

diva
dt

= λva(1− iva)− µviva − ξiva +
∑

hosts species b

ξi∗vb
nvb

nva
fav (33)

where we have made use of the fact that Nvb/Nva = nvb/nva. In equilib-
rium we can set n∗va = fav and get

λva =
1

1− i∗va

i∗va(µv + ξ)− ξ
∑

hosts species b

i∗vbfbv

 (34)
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Note that the prevalences i∗va must always satisfy∑
hosts species a

i∗vafav = i∗v (35)

Estimating transmission rates and determining reservoirs

To estimate transmission rates, we use the same procedure as above. Re-
placing Eq. (17b) with Eq. (34) and Eq. (20b) with

λva = bvτvfaviva (36)

yields (n + nm) equations that, in combination with the m Eqs. (35), can
be solved to yield the (n + nm +m) variables b̂a, i∗va and bv, given a biting
correlation ξ. From these, host species contributions can be determined as
outlined above.

Correlated bites by group

Another hypothesis would have biting correlations occur not by individ-
ual species but groups of species. For example, a fly biting any domestic
animal could be more likely to bite any other domestic animal (but not
necessarily of the same species) than randomly. To reflect this in the frame-
work introduced above, we replace index i representing individual species
in Eq. (30) by an index representing a whole subset of species. For example,
we could have three such groups (Humans – Domestic animals – Wild ani-
mals) or two (Humans/Domestic animals – Wild animals). If G is a group
of species, Eqs. (30) become

dnGj

dt
= −ξnGj +

∑
groups H

ξnHvpGv

= −ξnGv + ξpGv

(37)

where, by the exact same argument as above, in equilibrium we have

nGv = pGv =
∑
a∈G

fav (38)

and Eq. (33) gets replaced by

iGv

dt
= λGv(1− iGv)− µviGv − ξiGv +

∑
groups H

ξiHv
nVHv

nVGv

fGv (39)

where we set fGv =
∑

a∈G fav.
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Eqs. (34) and (35) get replaced by

λGv =
1

1− i∗Gv

i∗Gv(µv + ξ)− ξ
∑

groups H

i∗HvfHv

 (40)

∑
groups G

i∗GvfGv = i∗v (41)

and Eqs. (20) by

λa =
b̂a
na

∑
vector species v

τl
fav∑

b∈G(a) fbv
nvi

∗
G(a)v (42a)

λvG = bvτv

∑
a∈G favi

∗
a∑

a∈G fav
(42b)

where G(a) is the group containing host a. The framework for vector
switching between individual species presented above can be seen as a spe-
cial case of this where G(a) ≡ {a}.

2.3 Interaction rates from habitat overlap

To reflect overlapping habitats and species distributions therein, we now
extend the approach presented in Section 2.2 to group species in different
ways depending on whether or to what degree they share a habitat.

To do this, we define a mixing matrix X , which describes how likely a
vector is to switch (and therefore transmit infection) between two species
or groups of species. The elements Xab could, for example, be set to 1 or
0 to reflect whether two species can be found in the same habitat or not,
or fractional values to reflect the amount of overlap between habitats. We
assume that a vector will never transmit between two species of which the
habitats do not overlap.

We follow the same approach as in Section 2.2, but restrict jumps by
vectors between species to those in the same habitat, the frequency of such
a jump for a given pair of species (or groups of species) a and b being given
byXab.

Dynamic system

To have consecutive bites on different species governed byXij , we rewrite
Eq. (32) describing the dynamical system to

dnva
dt

= −ξnva +
∑

hosts species b

ξnvbXabpva (43)
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Demanding that in equilibrium nva = fav yields

pva =
fav∑

b fbvXab
(44)

The dynamical equations for Iva are

dIva
dt

= λva(Nva − Iva)− µvIva − ξIva + ξfav

∑
b IvbXab∑
b fbvXab

(45)

Forces of infection

Dividing by Nva yields the relation between prevalence and force of infec-
tion

diva
dt

= λva(1− iva)− µviva − ξiva + ξ

∑
b i
∗
vbfbvXab∑
b fbvXab

(46)

so that, in equilibrium, we have

λva =
1

1− i∗va

{
i∗va(µv + ξ)− ξ

∑
b i
∗
vbfbvXab∑
b fbvXab

}
(47)

and the equilibrium prevalences i∗va again must satisfy∑
hosts species a

i∗vafav = i∗v (48)

In our case, we have the densities nh
a (or presence/absence) of the different

species in four different habitats given, a indicating the species and h the
habitat. We can then estimate the interaction rate Xab between species a
and b to

Xab =

∑
h n

h
an

h
b

(
∑

h n
h
a)
(∑

h n
h
b

) . (49)

3 Model extensions

Two additional aspects of trypanosomiasis dynamics can be included for
greater realism: the fact that there is an incubation period of the vector in
the fly, and the fact that the chances of infection are significantly reduced
for flies that were not infected by trypanosomes on their first bite. Here, we
describe the effect these inclusions have on the simplest model of Eqs. (15).
This is easily extended to the more complicated models of correlated biting
and patchy dynamics.

Since neither of these model extensions yielded qualitatively different
dynamics with respect to the question of animal reservoirs, we focused on
the simpler model in the main manuscript.
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3.1 Incubation period

We include an additional state C for incubating flies. If the average incuba-
tion period of vector v is α−1v , the dynamical system is

dIa
dt

= λa(Na − Ia)− (µa + γa)Ia (50a)

dCv

dt
= λv(Nv − Iv − Cv)−αvCv − µvCv (50b)

dIv
dt

= αvCv − µvIv. (50c)

3.2 Teneral flies

We include an additional state G for flies that have not been infected on
their first bite. If only teneral flies can be infected (but then remain infected
for a lifetime), the dynamical system is

dIa
dt

= λa(Na − Ia)− (µa + γa)Ia (51a)

dIv
dt

= λv(Nv − Iv −Gv)− µvIv (51b)

dGv

dt
= (λv − τv)(Nv − Iv −Gv)− µvGv. (51c)
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