
Supplementary Information:

Ribosome traffic on mRNAs maps to gene ontology:
genome-wide quantification of translation initiation rates

and polysome size regulation

Luca Ciandrini, Ian Stansfield, M. Carmen Romano

Contents

1. Estimation of hopping rates in the two-state model 1
2. Classification of sequences 5
3. Codon arrangement as a key determinant of protein production rate 7
4. Quantification of initiation rates 7
4.1. Pheromone treatment 8
5. Energy of secondary structures 10
6. ORF-length dependence of the initiation rate 11
7. Computation of p-values 13
8. Software and simulations outcome 13
References 14

1. Estimation of hopping rates in the two-state model

Assuming a spatially homogenous pool of tRNAs in the cell, the tRNA-capture rates
ki are related to the inverse of the average arrival and recognition time of the cognate
tRNA, and are determined as follows.

The total translation rate ωi of codon i is given by:

(1)
1

ki
+

1

γ
=

1

ωi
,

where γ is the translocation rate, γ = 35s−1 (see main text). An initial estimate of the
hopping rates kj of the codons translated by the tRNA j is

(2) kj = r
GCNj∑41
j=1GCNj

,

where GCNj is the gene copy number of the tRNA of type j with j = 1, . . . , 41, and r
is a proportionality constant such that 〈ωi〉 = 10 codons/s, 〈·〉 representing the average
value over all the codons. That means, codons that are translated by the same tRNA
j are initially assigned the same ki value. Therefore, effectively we would have only 41
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different types of codons, corresponding to the 41 different types of tRNAs. However,
experimental data suggest that the translation rates of codons using the G-U wobble
are reduced by 39% compared to their G-C counterparts. Analogously, codons using the
wobble I-C and codons using the wobble I-A are reduced by 36% relative to their I-U
counterparts [1]. We reduce then the initially obtained rates accordingly. Furthermore,
the average value of the total translation rate is calculated as it follows

(3) 〈ωi〉 =
61∑
i=1

(
kiγ

ki + γ

)
ni
n
,

where ni is total number of codons in the cell of exactly type i, and n =
∑61

i=1 ni. Equat-
ing this last equation to 10s−1, we obtain (numerically) the value for the proportionality
constant r. Table S1 summarises the results. The termination rate is assumed to be fast
and comparable to the translocation. Therefore, we set β = 35s−1.

We are aware that additional factors can be taken into consideration to estimate the ki
rates, for instance, the occupancy of the ribosomal A-site by other (non-cognate and near-
cognate) tRNAs [2, 3]. However, the main factor determining the arrival of the cognate
tRNA is its abundance [12], and the overall conclusions of this work hold even considering
further corrections in the estimation of the ki rates. To demonstrate this beyond doubt,
we compared the ki rates with alternative transition rates that consider the occupancy
time of the ribosomal A-site by near- and non-cognate tRNAs. To produce those rates we
used tRNA abundance data from [4] and assumed biochemical reaction rates measured in
vitro and in particular circumstances [5], as these were the only available data. Figure S1
shows a comparison of both sets of ki rates, from which it is apparent that the relationship
among different ki rates does not change much in the alternative set of values.
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Figure S1. Comparison between the ki transition rates (blue) an alter-
native choice of the transition rates considering the competition of near-
and non-cognate tRNAs (orange) for all codon types.

We additionally confirmed that our classification of sequences into two distinct types
of response to initiation rate, namely smooth and abrupt (see main text), is not affected
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by the additional consideration of non-cognate and near-cognate tRNAs. Moreover, as
one can appreciate from Figure S2, the polysome size (density ρ) is comparable in both
sets of rates, particularly around the expected value of the physiological initiation rate
αϕ (which median is 0.09 s−1 and mean 0.12 s−1, see main text). For these reasons we
did not to include this further level of complexity.
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Figure S2. Comparison between the simulated densities computed by
using the ki transition rates (full lines) and an alternative choice of the
transition rates considering the competition of near- and non-cognate
tRNAs (dashed lines) for two different mRNAs: YBL105C in black and
YAL003W in red.
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tRNA anti-codon codon GCN ki

Ala1 IGC GCU 11.00 18.34
Ala1 IGC GCC 11.00 11.74
Ala2 UGC GCA 5.00 8.34
Ala2 UGC GCG 5.00 8.34
Arg1 CCU AGG 1.00 1.67
Arg2 ICG CGU 6.00 10.01
Arg2 ICG CGC 6.00 6.40
Arg2 ICG CGA 6.00 6.40
Arg3 UCU AGA 11.00 18.34
Arg4 CCG CGG 1.00 1.67
Asn GUU AAU 10.00 10.17
Asn GUU AAC 10.00 16.68
Asp GUC GAU 15.00 15.26
Asp GUC GAC 15.00 25.01
Cys GCA UGU 4.00 4.07
Cys GCA UGC 4.00 6.67
Gln1 UUG CAA 9.00 15.01
Gln2 CUG CAG 1.00 1.67
Glu3 UUC GAA 14.00 23.35
Glu4 CUC GAG 2.00 3.34
Gly1 GCC GGU 16.00 16.28
Gly1 GCC GGC 16.00 26.68
Gly2 UCC GGA 3.00 5.00
Gly3 CCC GGG 2.00 3.34
His GUG CAU 7.00 7.12
His GUG CAC 7.00 11.67
Ile1 UAU AUA 2.00 3.34
Ile2 IAU AUU 13.00 21.68
Ile2 IAU AUC 13.00 13.87
Leu1 UAG CUA 3.00 5.00
Leu1 UAG CUG 3.00 5.00
Leu3 CAA UUG 10.00 16.68
Leu4 UAA UUA 7.00 11.67
Leu5 GAG CUU 1.00 1.02
Leu5 GAG CUC 1.00 1.67

tRNA anti-codon codon GCN ki

Lys1 CUU AAG 14.00 23.35
Lys2 UUU AAA 7.00 11.67
Met CAU AUG 5.00 8.34
Phe GAA UUU 10.00 10.17
Phe GAA UUC 10.00 16.68
Pro1 UGG CCA 10.00 16.68
Pro1 UGG CCG 10.00 16.68
Pro2 IGG CCU 2.00 3.34
Pro2 IGG CCC 2.00 2.13
Ser2 IGA UCU 11.00 18.34
Ser2 IGA UCC 11.00 11.74
Ser3 GCU AGU 4.00 4.07
Ser3 GCU AGC 4.00 6.67
Ser4 UGA UCA 3.00 5.00
Ser5 CGA UCG 1.00 1.67
Thr1 IGU ACU 11.00 18.34
Thr1 IGU ACC 11.00 11.74
Thr2 CGU ACG 1.00 1.67
Thr3 UGU ACA 4.00 6.67
Trp CCA UGG 6.00 10.01
Tyr GIA UAU 8.00 8.14
Tyr GIA UAC 8.00 13.34
Val1 IAC GUU 14.00 23.35
Val1 IAC GUC 14.00 14.94
Val2 UAC GUA 2.00 3.34
Val2b CAC GUG 2.00 3.34

Table S1. Hopping rates ki considering supply (gene copy number of
tRNAs) and wobble base-pairing.
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2. Classification of sequences

In order to classify the mRNA sequences into abrupt or smooth we applied a clustering
k-means based algorithm [17] to the density of particles in the excited state (ribosomes
loaded with tRNAs before translocation to the next codon) versus the initiation rate
α. This curve can be approximated by three consecutive straight lines. In the case of
smooth sequences, the slope of the first line is larger than the slope of the second line,
whereas in the case of abrupt sequences it is the other way around. In the idealistic
case of a sequence composed of only the same fast codon except a slow codon in the
bulk of the sequence, the density of ribosomes shows a discontinuity when α reaches the
value of the hopping rate of the slow codon [6]. A real mRNA sequence is composed of
many different codons, but if there is a slow codon or a cluster of slow codons in the
bulk of the sequence it can act as a bottleneck for the traffic of ribosomes. Due to the
inhomogeneities of the sequence (every codon is different) and to the finite length of the
sequence, there is no real discontinuity in the density of particles, but beyond a certain
value of the initiation rate α the density increases rather abruptly, until it reaches the
saturation value. Therefore, we find three qualitatively different regions in the curve;
in the first region the density increases slowly with α, in the second region the increase
is very abrupt, and in the third region, the density shows a very shallow or no increase
with α (see Figure S3b). In contrast, if the mRNA sequence does not contain any slow
codons or cluster of slow codons in the bulk, but there are either no slow codons or they
are at the beginning of the sequence, the density of particles increases smoothly with α.
In this case, the curve can also be split in three regions; in the first region the density
of loaded ribosomes increases steadily with α, in the second region the rate of increase
decreases, until the saturation is reached in the third region (see Figure S3a).

Figure S3. Slopes of the density of loaded ribosomes (ribosomes with
a tRNA in their A site) in the three regions identified by the algorithm
for a typical smooth sequence (YAL019W) (a) and a typical abrupt one
(YAL001C) (b).

Hence, the k-means based algorithm iteratively assigns each point of the curve to one
of the three regions, by performing a linear regression in each part. The iterative loop
stops when there is no further change in the assignment of points to each of the three
regions. By means of this algorithm we are able to classify 5,669 sequences out of all
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6,293 ORFs. In the remaining sequences, the algorithm did not find three consecutive
slopes to approximate the curve, but rather assigned different intermingled segments of
the curve to the three different straight lines. In order to classify these sequences we
applied another algorithm; we first performed a linear regression taking the first tenth of
the points of the curve and kept adding consecutive points to the first region, every time
updating the linear regression, until there was a large deviation from the initial slope.
That point indicated the end of the first region of the curve. Then we continued with the
third region of the curve, starting from the last point and going backwards. Like that,
the second region, the most difficult to identify, was determined. We then calculated
for each sequence a goodness of fit parameter between the simulated density curve and
the fitted straight lines (normalised square root of the sum of squared differences) . In
the first run of the second algorithm, the goodness of fit parameter for some sequences
was too high (indicating a poor fit); hence, those sequences were reanalysed again by
the second algorithm with changed parameters (the thresholds that limited the maximal
allowed deviation from the initial first and third regions). Again, after this analysis some
sequences presented a poor goodness of fit, and hence this procedure was reiterated 6
times. At the end, only 32 sequences could not be classified by means of these two
algorithms.

In the final classification, we included an additional class for sequences on the bound-
aries between the two groups (for example, sequences initially classified as abrupt by the
algorithms, but without pronounced traits of this class). Such sequences generally have
an absolute relative difference between the slope of the second and the first part of the
curve smaller than a pre-defined threshold, i.e. sequences with |b2 − b1| /b1 < 0.5, where
b1 and b2 denote the slopes of the first and second part of the curve, respectively. We de-
note these sequences as hybrid. The histogram of the abruptness parameter (b2− b1)/b1
for all sequences is presented in Fig. S4.
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Figure S4. Normalised histogram of the abruptness (b2− b1)/b1 among
the entire genome. Smooth sequences in blue (with abruptness < 0.5),
abrupt sequences in red (abruptness > 0.5) and hybrid among them. The
abruptness reaches values of ∼ 50, but here we show only the first part
of the distribution to emphasise the smooth and hybrid sequences.
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3. Codon arrangement as a key determinant of protein production rate

To show that codon arrangement is a key determinant of protein production rate
J we randomised the codon configuration of a given mRNA in such a way that the
codon composition is identical, as well as the encoded amino acid sequence. Applying
this randomisation algorithm we generated 2,000 randomised surrogates of the original
sequence and calculate the protein production rate J for each one, for a fixed value of
the initiation rate α. We chose a large value of the initiation rate, namely α = 10 s−1

in order to isolate the elongation effects.
The values of the obtained protein production rates are different among the ran-

domised population and are collected in an histogram (an example is shown in Figure S5).
Similar distributions can be obtained for smaller initiation rates.

The fact that we obtain a broad distribution of J values clearly demonstrates that
mRNAs with identical codon usage but different codon arrangement have different trans-
lation efficiency.

Figure S5. Normalised histograms of the simulated protein production
rates J obtained by randomising at least 1,000 times the sequences of the
genes (a) RPS21B (YJL136C - ribosomal protein), (b) CAN1 (YEL063C
- membrane protein), (c) PGK1 (YCR012W - phosphoglycerate kinase),
and (d) MTF2 (YDL044C - mitochondrial transcription factor).

4. Quantification of initiation rates

By combining the genome-wide experimental data of polysome size by [15] with the
results from our stochastic simulations, we were able to extract the value of the initi-
ation rate α for each mRNA. This was done by equating the measured (experimental)
values and the outcome of the simulations, Equation (1) of the manuscript, via a linear



8 Luca Ciandrini, Ian Stansfield, M. Carmen Romano

interpolation between the simulations points. The value of α was then determined as
the value at which the simulated polysome size equated the experimental value.

We found a strong correlation between the ORF length and the estimated αϕ (see
Figure 3 in the main text). In Fig. S6 we emphasise that, because each mRNA has
a different rate of change of the density upon changes of the initiation rate (given by
its codon composition and arrangement), an mRNA with high ribosome density does
not necessarily mean that it has a large initiation rate. In the example shown, in fact,
we illustrate how the estimated initiation rate of a gene with a large density value
(YAL008W, in blue) is smaller than the initiation rate of a gene with smaller amount of
ribosomes per nucleotide (YBL087C, in green).
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Figure S6. Procedure to estimate the physiological initiation rates αϕ:
the experimental [15] density ρϕ is used to extrapolate the physiolog-
ical initiation rate αϕ for each transcript from the predicted ribosome
densities (full lines).

We interpret the correlation between αϕ and the ORF length as the indication of a
possible regulatory mechanism of the initiation of translation, likely due to the circular-
isation of smaller transcripts, that can control the recruitment and loading of ribosomes
into the mRNAs, and lead to the known density-ORF length relationship [11] (see also
Section 6 of this Supplementary Information).
Furthermore, to demonstrate that comparable results can be obtained by using an inde-
pendent dataset, we used the density measurements from [11] and repeated the procedure
obtaining a new set of initiation rate values denoted by αArava

ϕ . We found again that the
estimated values of the initiation rates are distributed rather than being a unique value
for all the mRNAs, see Figure S7. The physiological αϕ used in the main text (where we
used the dataset from [15]) and this set of initiation rates αArava

ϕ are highly correlated

(Spearman’s rank=0.73, p-value< 10−6), confirming that our results are general and not
only valid for a specific dataset.

4.1. Pheromone treatment. We used the same procedure to estimate the set of ini-
tiation rates αt under pheromone treatment starting from the polysome measurements
provided in [15]. We then compared the initiation rates under pheromone treatment to
the physiological ones and defined, for each mRNA, the relative change as (αϕ−αt)/αϕ.
Figure S8 shows the normalised histogram of the relative change across all genome.
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Figure S7. (a) Distribution of the estimated initiation rates in S. cere-
visiae using polysome size measurements reported in [11]. (b) Compar-
ison between the physiological initiation rates estimated using data of
polysome size by [15] (αϕ) and by [11] (αArava

ϕ ), Spearman’s rank =0.73,

p-value< 10−6.

Although in general we do not detect large changes in the initiation process under
pheromone treatment, two genes playing a key role in the pheromone response path-
way (SAG1 and HO) present a large variation in the initiation rate. Consistent with
this observation, these two genes are known to be subject to alteration of their 5’UTRs
under pheromone treatment [16].
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Figure S8. Frequency of the relative change of the initiation rates be-
tween the physiological and the pheromone cases, (αϕ−αt)/αϕ. Triangles
indicate the corresponding values for SAG1 and HO.
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5. Energy of secondary structures

We computed the energy of secondary structures in the 5’UTRs (sequences from [7]
with the RNAfold programme from the Vienna package [8]. The values of the free
energies were then compared to the estimated initiation rates αϕ; we found a significant
correlation (Spearman’s rank = 0.25, p-value< 10−6) between the initiation rates and
the free energy of secondary structures, meaning that folding structures in the 5’ leaders
can affect the recruitment of ribosomes. Figure S9 shows the scatter plot between the
estimates αϕ and the absolute value of the free energy of secondary structures in the
5’UTRs.
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Figure S9. Scatter plot of the absolute value of the free energies of
secondary structures in the 5’UTRs and the estimated αϕ.
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6. ORF-length dependence of the initiation rate

In [14] the authors argue that a region of constant length with higher ribosome density
close to the 5’ end (caused by the ramp of slow codons) would lead to the observed
larger ribosome densities on short transcripts [11, 14], since that constant length high
density region is a proportionately larger fraction of a small mRNA (see hypothesis A
in Fig. S10). To test this argument, we have first determined the relative bottleneck
position (position of the bottleneck divided by the length of the ORF) and we find,
consistently with [13], slow regions at the start of the coding sequences (see Figure S11).

Figure S10. Two different hypotheses on the extension of the bottleneck
close to the 5’ end. (A) The bottlenecks has roughly the same extension
independent on the ORF length. (B) The 5’ bottleneck occupies a region
which extension depends on the ORF length, and its relative length is
similar for all the transcripts.

We computed the bottleneck position (using the ki rates, section 1 of this Supple-
mentary Information) of each sequence of the genome, following the method described
in [13]. We find that the ramp of slow codons at the beginning of the sequences does not
have a fixed length (hypothesis A in Fig. S10), but it is shorter for shorter sequences, so
that the relative position of the bottleneck to the total ORF length is constant across
the genome (hypothesis B in Fig. S10). This is shown in the joint histogram of relative
bottleneck position and ORF length in Figure S11; if hypothesis A were true, we would
have observed the peak of the distribution moving towards 1 upon increments of the
ORF length. The reader should notice that a similar conclusion was found by Noval and
Pilpel [9].

The excess of ribosomes queueing at the 5’ end would cause the density-ORF length
correlation observed in the experiments [11, 14] only if hypothesis A were verified (same
amount of ribosomes queueing would weight more for shorter mRNAs). Instead, in
hypothesis B the amount of ribosomes queueing scales with the length of the transcript,
and hence the excess of ribosomes at the 5’ end cannot explain the experimental density-
ORF length correlation.

We have also performed another test of hypothesis A, based on the stochastic dynamics
of ribosomes; we compute the maximal density ρmax as defined in the ‘Materials and
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Figure S11. Joint histogram of the relative bottleneck position and
length L of the ORF. To compare different values of L we normalise
the marginal distributions of the relative positions (the sum of the fre-
quencies of bins with the same L is equal to 1). For any ORF length
there is an accumulation of bottlenecks close to the 5’ region (consistently
with [13]). The relative position of the upstream bottlenecks rather than
their absolute location, however, seems to be conserved.

Methods’, which is determined by the relative position of the bottleneck, since after
the bottleneck the density of ribosomes would be negligible. We find no significant
correlation between ORF length and ρmax (Figure S12), indicating that the position of
the bottleneck does not depend on the transcript length; in other words, the average
distance of the bottleneck from the beginning of the ORF is not constant across the
genome.

Thus an elongation limited process (bottleneck) would not explain the negative cor-
relation between densities and transcript lengths. We suggest instead, neglecting other
possible sources of correlations such as mRNA degradation [10], that one possible reason
for the negative correlation between coding sequence length and ribosome density is the
relationship we detect here between initiation rates and ORF lengths. The negative
correlation between initiation rates and ORF lengths may be a signature of ribosome
recycling: due to the pseudo-circular conformation of mRNAs, the ends of short mRNA
chains can relatively easily interact and enhance the ribosome re-initiation process, while
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Figure S12. Scatter plot of ORF length against ρmax. Since ρmax de-
pends on the position of the bottleneck, the lack of clear correlation
indicates that the bottleneck position cannot be the only cause of the
experimentally observed density-length relationship.

long sequences are potentially less efficient recyclers of ribosomes [18, 19], as already
speculated in [11].

7. Computation of p-values

The p-values given along with the correlation coefficients were calculated as follows:
after computing the correlation coefficient c(X,Y ) between the data sets X = {xi}
and Y = {yi}, one of the data sets, say Y = {yi}, was shuffled 106 times, thereby
generating 106 surrogates Y surr

j , with j = 1, . . . , 106. Then, the correlation coefficient
was computed between X and each of the generated surrogates, leading to a set of
106 correlation coefficients values c(X,Y surr

j ). These values were then ranked, and the

proportion of these values above c(X,Y ) determined the p-value.
To avoid confusion, the measure of statistical significance provided by an hypergeo-

metric function is instead denoted with a capital letter, P-value.

8. Software and simulations outcome

The programs used were written in C++ and are available on request. For all mRNAs,
the profiles of density and current for different values of initiation rates, ρ(α) and J(α),
are also available on request or can be downloaded from the authors’ webpages or from
http://abdn.ac.uk/mRNA-translation/.
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