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1. A brief review of the relationship between the effective population size (Ne) and the census population size (N) in population genetics
(a) Effective population number (Ne)
In the history of population genetics there have been numerous approaches to defining effective population size or number. Most of them create a measurable quantitative metric for the size of an idealized population structure that has the same properties as the real population. The first realization of such a metric was by Sewall Wright1[,2]
, where effective population size is determined as the size of idealized population in which each individual has an equal expectation of progeny. This idealized population is known as the Wright-Fisher model, for which the number of progeny per parent is distributed according to a Poisson distribution.

Kimura3[]
 provided two distinct definitions of the effective population number. The first, called the inbreeding effective number (Nei), is defined as the population size of an idealized population having the same amount of inbreeding as the studied population. He derived a formula between the effective inbreeding number and the census population size N of a monoecious diploid population:
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 (S.Eq.1)
Where Vk is the variance in the number of progeny per parent.


In the same paper he describes a second definition of the effective population number, the variance effective number Nev, which is the size of an idealized population having the same amount of random genetic drift as the studied population. He proves that when the population size is constant and there is random mating Nev and Nei have the same size. Furthermore for overlapping diploid generations Kimura provided a simple formula for the effective inbreeding size
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Where b is the average birth rate and τ is the average age of reproduction.


Felsenstein 4[]
 provided a correction of the Nei in Kimura’s initial proposal by deriving the general formula:
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Where N1 is the birth rate, T is the generation time, N1T is defined as the total reproductive value and the second term in the denominator is roughly the probability of death of an individual while it still has reproductive value. By applying this formula to the Moran model 5[]
 he proves that:
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He also provides a proof that under a constant population model and random mating Nev and Nei have the same size.
A third realization of the effective population size, the coalescent effective size Nec, is generally described as the size of the population estimated under the n-coalescence of Kingman 6[]
. Wakeley and Sargsyan 7[]
 clarified that Nec is an effective size which refers to the mutation rate as a property of the idealized population and provided a general formula for it:
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where cn is the probability that a pair of ancestral lineages are descended from a common ancestor and bn is the probability that a single ancestral lineage is newly born. They also demonstrate that for the Wright-Fisher model Nec=N and that for the Moran model 
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. Thus, under the most widely used population models the three definitions of the effective population numbers (the inbreeding, the variance and the coalescence) converge.

(b) The ratio of effective population size (Ne) against census population size (N) (Ne/N)


As most of the definitions of effective population size refer to the size of an idealized population that has the same property as the studied population, the ratio of Ne/N is a metric showing the departure of the real population from the idealized one. S.Eq.1 suggests that departure from the idealized population can be attributed to the significantly different variance in the number of progeny per parent from the one suggested by the Poisson distribution. The ratio Ne/N has been used in this context to describe departures of the studied population from the idealized model, such as uneven sex ratio, variance in family sizes greater than the mean, and variance in reproductive success 
 ADDIN EN.CITE 
[8-14]
.


Hedgecock 15[,16]
 showed that in mollusks or fishes most of the generations are descended from a very low proportion of individuals. The phenomenon was attributed to a mixture of different environmental and reproductive activity factors. As a result Ne/N was very low and the phenomenon, compared to a sweepstake-like chance (due to the randomness of the very small proportion of individuals producing a very large number of offspring), was named “the Hedgecock effect”. Hedrick 17[]
 estimated that in an extreme case of such a phenomenon, that is only one individual contributes to the next generation, Ne/N should equal to 1/N and that generally in the sweepstake-like reproduction Ne/N should be approximately Nb/N, where Nb is the number of the breeding adults.


Wakeley and Sargsyan 
 ADDIN EN.CITE 
[7,18]
 developed a coalescent model of which the Wright-Fisher, Moran and sweepstakes-like reproduction are special cases. They showed that generally the coalescent effective population size is given by the formula:
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where YN is the number of potential parents of the offspring replacing the XN individuals that died in a disturbance event, ϕ is the fraction of the population removed in each disturbance event and o(1) goes to zero as N→∞. From that formula it can be easily shown that as N→∞
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This formula shows that the ratio Ne/N is an estimate of the ratio of the individuals passing their genes divided by the number of the individuals dying. When YN<<XN S.Eq.7 provides the same results as proposed by Hedrick 17[]
 and therefore it shows the proportion of individuals contributing to the next generation.

(c) Derivation of Ne/N for infected populations


The skyline plot (18) provides an estimate of the population size (Nes) as a function of the coalescence rate λn (number of coalesced lineages per generation) and the number of lineages (n) in the genealogy: 


[image: image9.wmf]n

n

Ne

l

÷

÷

ø

ö

ç

ç

è

æ

=

2

 (S.Eq.8)

Using time-scaled phylogenetic trees we can estimate the coalescence rate as a function of time λT (number of coalesced lineages per time unit), which is connected with the coalescence rate as follows:
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Therefore the skyline plot provides an estimate of the product of the coalescence effective population size with the generation time T.
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Kingman 6[]
 and Tavare 19[]
 showed that the coalescence effective population size is connected with the census population size (N) and the variance in the reproductive success σ2 is as follows:
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We follow Felsenstein 4[]
 who showed that this ratio under a Wright-Fisher demography should be 1 and under a Moran demography should be close to 0.5; this has also been supported by simulations for the coalescent effective population size 20[]
.  

The epidemic analogue of the census population size is the number of prevalent cases which we will denote N. By combining the skyline plot and the prevalent cases into a ratio we get the following:
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Therefore, if we know T we can either estimate the variance in the number of secondary infections per primary infection 
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 (S.Eq.12) or the proportion of the transmitting individuals of the infected population if Ne<<N (S.Eq.7).

2. Phylodynamics estimates of HCV epidemics in Greece.
(a) PCR-Sequencing

Regarding the PCR sequencing, best amplification was observed for 1b and 3a, while for 1a and 4a the amplification was less efficient for the E2P7NS2 region (Table S1). 

Sequences from different genomic regions in the same patient were concatenated, while sequences from patients in which not all the target regions were amplified were dropped. Our analysis shows that using the tMRCA estimations of E2P7NS2 as a gamma distributed prior to calibrate the NS5B phylodynamic estimations results in increased accuracy. Concatenation of the data resulted in less accurate estimations as previously described 21[]
. This can be explained by 1) E2P7NS2 containing more molecular clock information, 2) NS5B containing more population structure information due to the increased number of sequenced samples. By concatenating the data and dropping sequences we lose molecular clock information and population structure, resulting in statistically less accurate estimations.

The sequences are deposited in Genbank with the following accession numbers: JN563611-JN563678, FJ538017–FJ538098.
(b) Phylogenetics – phylodynamics

Genotype-subtype reference sequences were determined as follows: Genotype 1 (1a: AF009606, AF387806, AF290978, 1b: D50483, AB049093, D85516), Genotype 2 (2a: AF169005, AB047645, D00944, 2b: AB030907, 2c: D50409), Genotype 3 (3a: D28917, D17763, 3b: D49374, 3k: D63821), Genotype 4 (Y11604), Genotype 5 (AF064490, Y13184), Genotype 6 (6a: Y12083, 6b: D84262, 6d:D84263, 6k: D84264, 6h: D84265, 6g: D63822).

Sequence alignment was performed using Clustal-W 22[]
 and was checked manually. We used ModelTest 23[]
 to select the simplest model that fitted the sequence data adequately. Using PAUP 24[]
, we estimated very large trees (>500 taxa), using neighbor-joining with the Kimura 2-parameter model to determine the distribution of the included samples in the global epidemic. We estimated smaller trees using Tree-Puzzle 25[]
 with the Tamura-Nei model 26[]
; rate heterogeneity among sites was modelled using a discrete gamma distribution with four categories of rates.

We performed the main phylodynamic analysis as implemented in BEAST 27[]
. A Markov chain Monte Carlo (MCMC) was run for each genotype for at least 10,000,000 generations, sampling a tree every 1000 generations. We use the General Time Reversible model of nucleotide substitution with among-site rate heterogeneity modelled using a discrete gamma distribution with four rate categories. The program Tracer (http://evolve.zoo.ox.ac.uk/software.html?id=tracer) was used to check for convergence and determine whether appropriate mixing of the MCMC sampler had been achieved in the posterior target distribution (effective sample size>100).

We used relaxed-clock models (uncorrelated log-normal) 28[]
 as implemented in BEAST to determine whether a strict-clock model is appropriate. The strict clock model was then implemented whenever the coefficient of variation (CoV) of the inferred distribution of rates was lower than 0.15, thus indicating consistency with the assumption of a molecular clock. We used the Bayesian skyline model and made no assumptions about the growth and expansion of the epidemic in the population.

We fitted shifted bivariate gamma distributions to the distributions of the time to most recent common ancestor (tMRCA) by calculating the maximum likelihood estimators of the alpha and beta parameters as implemented in STATA 8.0 with the gammafit function 29[]
. We calculated the shift of the gamma as being equal to the modulus of the minimal value of the estimated distribution of the tMRCA. More details on the phylodynamic approach can be found in a recent publication 21[]
.
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