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ODE Model Equations
Our deterministic SIR model extends a framework presented by Lipsitch et al. (2008) [1]. We have
five classes of individuals: susceptible (S), infectious and untreated (Iu), infectious and treated
(It), infectious with a resistant strain (Ir) or recovered (R). Let γu, γt and γr be the recovery
rate for untreated, treated and resistant infections, respectively and let c be the probability of a
sensitive infection evolving de novo resistance to treatment. Let βu, βt, and βr be the transmission
parameters for untreated sensitive, treated sensitive, and resistant virus respectively. As in [1],
treatment reduces the infectiousness but not the duration of infection. Let ρ be the fraction of
drug-sensitive infections that receive treatment. The governing differential equations are then:

Ṡ = −(βu Iu + βt It)S − βr Ir S
İu = (βu Iu + βt It)(1− ρ)S − γu Iu
İt = (βu Iu + βt It)ρ(1− c)S − γt It
İr = (βu Iu + βt It)ρc S + βr Ir S − γr Ir
Ṙ = γ(Iu + It + Ir)

(1)

Mean Field Network Model Equations
To include individual heterogeneity we employ a network model of disease transmission. Here, in
contrast to the ODEs in (1), one typically needs to introduce a higher-order compartmentalization
where nodes are distinguished not only by their state, but also by their degree. Hence, instead of
one equation for the fraction of susceptible individuals S(t) at time t, we write an infinite number
of equations for the fraction of susceptible nodes of degree k, Sk(t), at time t. We obtain

Ṡk(t) = −k (βu〈Iu〉+ βt〈It〉+ βr〈Ir〉)Sk(t) (2)

where 〈Ix〉 is the probability, that a randomly chosen link among the k belonging to a susceptible
node leads to an infectious individual of type x ∈ {untreated, treated, resistant}. Similarly,

İu,k(t) = k (βu〈Iu〉+ βt〈It〉) (1− ρ)Sk(t)− γuIu,k(t) (3)

İt,k(t) = k (βu〈Iu〉+ βt〈It〉) ρ(1− c)Sk(t)− γtIt,k(t) (4)

İr,k(t) = k (βu〈Iu〉+ βt〈It〉) ρcSk(t) + kβr〈Ir〉Sk(t)− γrIr,k(t) (5)

Ṙ(t) =
∑
k

γuIu,k(t) + γtIt,k(t) + γrIr,k(t) . (6)

Our ability to evaluate this mean-field quantity directly depends on our ability to correctly
follow the links stemming from susceptible nodes. To this end, we write a set of five ODEs for the
density of the possible links (where a link between nodes of state X and Y is denoted as [XY ]):
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Supplemental Figure 1: Degree distributions used in the main text. The heavy-tail distri-
bution (black line) corresponds to an initial binomial regime leading into a power-law tail with
exponential cutoff (for mean degree 〈k〉 ∼ 4.1). The binomial network is given by the red line and
has the same mean degree.

˙[SS] = −2 (βu〈Iu〉+ βt〈It〉+ βr〈Ir〉) 〈k′s〉[SS] (7)

˙[SIu] = −
[
(βu〈Iu〉+βt〈It〉+βr〈Ir〉) 〈k′s〉+βu+γu

]
[SIu]

+ 2 (βu〈Iu〉+βt〈It〉) 〈k′s〉(1− ρ)[SS] (8)

˙[SIt] = −
[
(βu〈Iu〉+βt〈It〉+βr〈Ir〉) 〈k′s〉+βt+γt

]
[SIt]

+ 2 (βu〈Iu〉+βt〈It〉) 〈k′s〉ρ(1− c)[SS] (9)

˙[SIr] = −
[
(βu〈Iu〉+βt〈It〉+βr〈Ir〉) 〈k′s〉+βr+γr

]
[SIr]

+ 2 (βu〈Iu〉ρc+βt〈It〉ρc+ βr〈Ir〉) 〈k′s〉[SS] (10)

˙[SR] = − (βu〈Iu〉+ βt〈It〉+ βr〈Ir〉) 〈k′s〉[SR]

+ γu[SIu] + γt[SIt] + γr[SIr] (11)

where 〈k′s〉 is the average excess degree of susceptible nodes. Equations (2)–(11) are minimal to
describe the system in the sense that they are sufficient to calculate all the mean-field quantities
on which they depend. Through a simple averaging procedure, one obtains:

〈k′s〉 =

∑
k k(k − 1)Sk∑

k kSk
, (12)

〈Ix〉 =
[SIx]

2[SS] + [SIu] + [SIt] + [SIr] + [SR]
(13)

We evaluate (2)–(11) numerically to explore the transmission dynamics of this system.

Derivation of the Critical Manifold
If βr < βeff = (1 − ρ)βu + ρ(1 − c)βt, and treatment effects only transmissibility, we assume that
it is always better to treat than not to treat. We also assume that we are not under the epidemic
threshold of either the resistant or untreated strains, as the disease would then die out even without
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treatment. In opposition, the case where βr > βeff, and both the resistant and untreated wild
strains are above the threshold, can lead to an important dilemma: is treatment more likely to
be effective at reducing total incidence or at creating resistance? This is problematic because the
resistant strain has the opportunity to lead to a bigger epidemic than the untreated disease through
treatment failure, so that treatment will actually have worsened the situation.

Here, we calculate the critical initial conditions of treatment I(0) (i.e. the number of individuals
in the Iu state at the beginning of treatment) for which treatment has approximately a 50/50 chance
of being efficient or dangerous.

Above the epidemic threshold of the resistant strain, one individual infected with the resistant
strain could spark an epidemic. Thus we simply calculate the probability of getting at least one
mutated strain given that we begin treatment when I(0) random individuals are currently infectious.
We assume that we are below the epidemic threshold of the treated disease, as an epidemic of the
resistant strain is always the more likely outcome.

Below this threshold, each of the I(0) infectious creates a microscopic epidemic of size 1+ T 〈k〉
1−T 〈k′〉

[2], where 〈k〉 and 〈k′〉 are the average degree and excess degree of the network, respectively, and
T is the total probability of transmission. Removing the original untreated infectious individuals
leads to I(0) T 〈k〉

1−T 〈k′〉 new infections. From these, the probability of getting at least one mutation is
directly obtained by

Pmuta(I(0)) = 1− (1− ρ · c)I(0)
T 〈k〉

1−T 〈k′〉 . (14)

The critical initial conditions of treatment Ic(0) is that I(0), for which expected epidemic sizes
are equal with and without treatment. The critical probability of mutation Pc := Pmuta(Ic(0))
must thus satisfy

PcRr + (1− Pc)Rt = Ru. (15)

where Ru, Rt and Rr are the expected epidemic size for the untreated, treated without mutation
and treated with mutation cases, respectively. Solving for Ic(0) gives

Ic(0) =
1− T 〈k′〉
T 〈k〉

log
(

1− Ru−Rt
Rr−Rt

)
log(1− ρ · c)

. (16)

Finally, note that the total probability of transmission T is easily approximated from the effec-
tive transmission rate of the treated disease, i.e. βeff = (1− ρ)βu + ρ(1− c)βt,

T =
βeff

γ + βeff
. (17)

Details of Network Simulations
To perform MC simulations of the model, we have generated networks of size N with the degree
distribution {pk} in Figure 3 via the following numerical algorithm:

i. draw a sample {ki} of size N from distribution {pk} under the condition that
∑N

i=1 ki is even;

ii. for each i, produce ki stubs tagged as i;

iii. randomly link all stubs in pairs (i, j), thus linking nodes i and j.

This is the so-called Configuration Model with allowed loops and self-links [3]. Each and every
network generated by this procedure is accepted and kept in the results, as they are part of the
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canonical ensemble considered by the mean-field approach of the formalism. For every generated
network, a fraction I(0) of individuals are randomly chosen to be initially infectious and the dy-
namics are then simulated in a discrete time propagation simulation valid for a time step ∆t → 0
(we choose ∆t such that βx∆t and γx∆t are less than 10−3 for all x):

i. at each ∆t, every susceptible neighbor S of every infectious individual Ix is infected with
probability βx∆t;

ii. wild strain infections are treated with probability ρ leading to mutation with probability c;

iii. at each ∆t every infectious individual Ix recovers with probability γx∆t.

Effects of Network Structure

The main results of the paper are robust to changes in network structure. Supplemental Fig-
ures 2 and 3 are analogous to Figures 3 and 4 in the main text but with binomial degree distribu-
tions (Supplemental Figure 1). Treatment when the system is above the critical manifold results
in widespread resistance, while treatment below the critical manifold reduces epidemic size. When
treatment is initiated early, resistance is minimized (Supplemental Figure 3).
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Supplemental Figure 2: Effects of Treatment Timing on Binomial Network. Effects of
treatment when initial conditions are above (panels b, c, d) and below (panels e, f, g) the critical
manifold. Panel a shows the critical manifold (dashed grey line) and the total number infected (red
line) from the mean-field approximations, with each large dot corresponding to the panels at right.
Solid lines correspond to mean-field approximations, and points correspond to means of 100,000
simulations on networks of size 250,000. Horizontal black line corresponds to a mean of 1 infected
individual in a network of 250,000 over 100,000 simulations. Above the critical manifold, treatment
induces large epidemics of the resistant strain (panels c and d). In the effective treatment regime
(below the critical manifold) early treatment reduced the number infected by 35-fold (panel f)
while late treatment reduces cases similarly but with much higher resistance (panel g). Parameters:
βu = 4 · 10−4, βr/βu = 1.2, βt/βu = 0.3, γu = γt = γr = 10−3, ρ = 0.6, and c = 1/500.
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Supplemental Figure 3: Comparison of Random and Targeted Treatment on the Binomial
Network. Panel a shows the final size for wild-type, resistant and both infections as a function
of percentage treated, ρ, for targeted (dashed lines) and random (solid lines) treatment regimes.
We see a transition from wild-type to resistant infections at a lower treatment percentage in the
targeted treatment regime. Panel b shows the percent of total infection that is the resistant strain
for the targeted (dashed line) and random (solid line) treatment. Parameters: βu = 6 · 10−4,
βt = 1.8 · 10−4, βr = 3 · 10−4, γu = γt = γr = 10−3, and c = 1/500.
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