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Text S1

Hyperparameters estimation for alternative model

In this section, we explain how to estimate hyperparameters by assuming

control sample is available. As hierarchical model without control data is

basically a special case of hierarchical model with control data, one can simply

remove y0, µ0 and σ2
0 to get hyperparameter estimation when control sample

is not available, and algorithm is unchanged. When alternative model is true

(see section Hierarchical model with control data and Hierarchical

model without control data in the main text), posterior distribution of

µi and σ2
i , i = 0, 1, ...,m, are[1]

p(µi|yi, σ
2
i , θ, κ) = N(

κ

κ+ ni
θ +

ni
κ+ ni

yi ,
σ2
i

κ+ ni
)

p(σ2
i |yi, υ, τ

2) = scaled inverse− χ2(υ + ni, σ̃
2
i )

where

σ̃2
i =

1

υ + ni

(
υτ 2 + (ni − 1)s2i +

κni
κ+ ni

(yi − θ)2
)

(1)
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ȳi = 1
ni

∑ni
j=1 yij and si = 1

ni−1

∑ni
j=1(yij − ȳi)2. Posterior distribution of σ2

c

is[1]

p(σ2
c |yc, υ, τ

2) = scaled inverse− χ2(υ + nc, σ̃
2
c )

where

σ̃2
c =

1

υ + nc

(
υτ 2 + (ni − 1)s2c

)

We used posterior expectations of µi and σ2
i as their estimations, which are

µ̂i = E(µi|yi, θ, κ) =
κ

κ+ ni
θ +

ni
κ+ ni

yi (2)

where i = 0, 1, ...,m.

σ̂2
i = E(σ2

i |yi, υ, τ
2) =

ni + υ

ni + υ − 2
σ̃2
i

where i = c, 0, 1, ...,m. We estimate hyperparameters (θ, κ, υ, τ 2, µc) from

the data by maximizing the marginal log-likelihood function, which is

3



L(yc,y0,y1, ...,ym; θ, κ, υ, τ 2, µc) = log(p(yc,y0,y1, ...,ym|θ, κ, υ, τ 2, µc))

= log(p(yc|θ, κ, υ, τ 2, µc))

+
m∑
i=0

log(p(yi|θ, κ, υ, τ 2))

where

log(p(yc|θ, κ, υ, τ 2, µc)) =
υ

2
log(υτ 2) + log(Γ(

υ + ni
2

))

− υ + ni
2

log(
nc∑
j=1

(ycj − µc)2 + υτ 2)− log(Γ(
υ

2
))

− nc
2

log(π)

m∑
i=0

log(p(yi|θ, κ, υ, τ 2)) =
m∑
i=0

[
1

2
log(κ) + log(Γ(

υ + ni
2

)) +
υ

2
log(υτ 2)

− 1

2
log(κ+ ni)− log(Γ(

υ

2
))− υ + ni

2
log((υ + ni)σ̃

2
i )

− ni
2

log(π)]

It is obvious that L(yc,y0,y1, ...,ym; θ, κ, υ, τ 2, µc) can be maximized by

setting µc = 1
nc

∑nc
j=1 ycj. However, it is difficult to get a close form of

(θ, κ, υ, τ 2) and we therefore adopted a EM algorithm (Algorithm 1) to esti-
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mate them numerically.

In the EM procedure, µi and σ2
i were regarded as missing data, and the

log-likelihood function with the complete data was

l(y, µ, σ2; θ, κ, τ 2, υ)

= log(p(y|µ, σ2)) + log(p(µ|σ2, θ, κ)) + log(p(σ2|υ, τ 2)))

= log(p(y|µ, σ2)) +
m∑
i=0

log(p(µi|σ2
i , θ, κ)) +

∑
i=c,0,1,...,m

log(p(σ2
i |τ 2, υ)) (3)

where y = (yc,y0,y1, ...,ym), µ = (µ0, µ1, ..., µm) and σ2 = (σ2
c , σ

2
0, σ

2
1, ..., σ

2
m).

Initial values (θ0, κ0, τ
2
0 , υ0) were assigned to (θ, κ, τ 2, υ), and in the tth step

(t ≥ 1) of EM algorithm, (θ, κ, τ 2, υ) were updated by the optimal value

(θopt, κopt, τ
2
opt, υopt) maximizing E

(
l(y, µ, σ2; θ, κ, τ 2, υ) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
,

where E(.) is expectation in term of (µ, σ2), i.e. θt = θopt, κt = κopt, τt =

τ 2opt, υt = υopt. This procedure was repeated until convergence.

In the tth step of the EM algorithm, (θopt, κopt) and (τ 2opt, υopt) can be ob-

tained by maximizing posterior expectation of the second term and the third

term of equation (3), i.e.
∑m

i=0E
(

log(p(µi|σ2
i , θ, κ)) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
and

∑
i=c,0,1,...,mE

(
log(p(σ2

i |τ 2, υ)) | y, θt−1, κt−1, τ
2
t−1, υt−1

)
, respectively.

1∆l = E
(
l(y, µ, σ2; θopt, κopt, τ

2
opt, υopt) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
−

E
(
l(y, µ, σ2; θt−1, κt−1, τ

2
t−1, υt−1) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
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Algorithm 1 EM algorithm for hyperparameters estimation

Assign initial values to hyperparameters, θ = θ0, κ = κ0, υ = υ0 and
τ 2 = τ 20 .
Set t = 1
while ∆l ≤ 0.1 1 do
E-step: Calculate conditional expectation of log likelihood function in
terms of µi and σ2

i , i.e. E
(
l(y, µ, σ2; θ, κ, τ 2, υ) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
.

M-step: Update (θ, κ, υ, τ 2) by setting θt = θopt, κt = κopt, υt =
υopt, τt = τ 2opt, where (θopt, κopt, υopt, τ

2
opt) are hyperparameters maximiz-

ing E
(
l(y, µ, σ2; θ, κ, τ 2, υ) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
Set t = t+ 1

end while

Estimating θ and κ By taking posterior expectation of the second term

of equation (3), we can get

m∑
i=0

E
(

log(p(µi|σ2
i , θ, κ)) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
= −κ

2

m∑
i=0

( 1

κt−1 + ni
+

(θ − µ̂i(t−1))
2

σ̃2
i(t−1)

)
− m+ 1

2
log(κ) + C

where σ̃2
i(t−1) and µ̂i(t−1) are estimated σ̃2

i and µi given (θt−1, κt−1, τ
2
t−1, υt−1)

(equation (1) and (2)), and C is a constant, which doesn’t contain any hy-

perparameters.
∑m

i=0E
(

log(p(µi|σ2
i , θ, κ)) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
can be
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maximized by θopt and κopt, which are

θopt =
m∑
i=0

µ̂i(t−1)

σ̃2
i(t−1)

/

m∑
i=0

1

σ̃2
i(t−1)

κopt = (m+ 1)/
m∑
i=0

( 1

κt−1 + ni
+

(θopt − µ̂i(t−1))
2

σ̃2
i(t−1)

)

Estimating τ 2 and υ By taking posterior expectation of the third term

of equation (3), we can get

∑
i=c,0,1,...,m

E
(

log(p(σ2
i |τ 2, υ)) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
=

(m+ 2)υ

2
log(

υτ 2

2
)− (

υ

2
+ 1)

∑
i=c,0,1,...,m

E
(

log(σ2
i ) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
−

τ 2υ

2

∑
i=c,0,1,...,m

E
( 1

σ2
i

| y, θt−1, κt−1, τ
2
t−1, υt−1

)
− (m+ 2) log(Γ(

υ

2
))

=
(m+ 2)υ

2
log(

υτ 2

2
)− (

υ

2
+ 1)

∑
i=c,0,1,...,m

(log(
(υt−1 + ni)σ̃

2
i(t−1)

2
)− ψ(

υt−1 + ni
2

))−

τ 2υ

2

∑
i=c,0,1,...,m

1

σ̃2
i(t−1)

− (m+ 2) log(Γ(
υ

2
))

where Γ(.) is gamma function and ψ(.) is digamma function.

By setting
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∂
∂τ2

∑
i=c,0,1,...,mE

(
log(p(σ2

i |τ 2, υ)) | y, θt−1, κt−1, τ
2
t−1, υt−1

)
= 0

∂
∂ υ

2

∑
i=c,0,1,...,mE

(
log(p(σ2

i |τ 2, υ)) | y, θt−1, κt−1, τ
2
t−1, υt−1

)
= 0

we got


(m+2)υ

2τ2
− υ

2

∑
i=c,0,1,...,m

1
σ̃2
i(t−1)

= 0

(m+ 2)
(

log(υ
2
) + log(τ 2)− ψ(υ

2
)
)
−
∑

i=c,0,1,...,m(log(
(υt−1+ni)σ̃

2
i(t−1)

2
)− ψ(υt−1+ni

2
)) = 0

we got close form solution of the above equations by using approximation

of digamma function, which is ψ(υ
2
) ≈ log(υ

2
)− 1

υ
− 1

3υ2
.

τ 2opt =
m+ 2∑

i=c,0,1,...,m
1

σ̃2
i(t−1)

υopt =
2

3(
√

1 + 4
3
T − 1)

where T = 1
m+2

∑
i=c,0,1,...,m

(
log(

(υt−1+ni)σ̃
2
i(t−1)

2
)− ψ(υt−1+ni

2
)
)
− log(τ 2opt).

Hyperparameters estimation for null model

For hierarchical model with control data, we denote pooled Box-Cox trans-

formed IPD of native and control data as yp (i.e. (yc1, yc2, ..., ycnc , y01, y02, ..., y0n0)).

For hierarchical model without control data, we simply let yc, Box-Cox trans-

formed IPD of native sample, equal to yp, because it is a special case of
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hierarchical model with control data, in which y0 is empty. We assume yp

follows a normal distribution

yp ∼ N(µp, σ
2
p)

and (µp, σ
2
p), (µ1, σ

2
1), (µ2, σ

2
2), ..., (µm, σ

2
m) have the same prior distribution,

which is

p(σ2
i |υ, τ 2) = scaled inverse− χ2(υ, τ 2)

p(µi|σ2
i , θ, κ) = N(θ,

σ2
i

κ
)

where, i = p, 1, ...,m. posterior distribution of µi and σ2
i , i = p, 1, ...,m, are

p(µi|yi, σ
2
i , θ, κ) = N(

κ

κ+ ni
θ +

ni
κ+ ni

yi ,
σ2
i

κ+ ni
)

p(σ2
i |yi, υ, τ

2) = scaled inverse− χ2(υ + ni, σ̃
2
i )

where

σ̃2
i =

1

υ + ni

(
υτ 2 + (ni − 1)s2i +

κni
κ+ ni

(yi − θ)2
)
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[1]. We used posterior expectations of µi and σ2
i as their estimations, which

are

µ̂i = E(µi|yi, θ, κ) =
κ

κ+ ni
θ +

ni
κ+ ni

yi

σ̂2
i = E(σ2

i |yi, υ, τ
2) =

ni + υ

ni + υ − 2
σ̃2
i

where i = p, 1, ...,m. Like the previous section, we adopt a EM algorithm (Al-

gorithm 1) to maximize marginal log-likelihood function L(yp,y1, ...,ym; θ, κ, υ, τ 2).

In the EM procedure, µi and σ2
i were regarded as missing data, and the log-

likelihood function with the complete data was

l(y, µ, σ2; θ, κ, τ 2, υ)

= log(p(y|µ, σ2)) +
∑

i=p,1,...,m

log(p(µi|σ2
i , θ, κ))

+
∑

i=p,1,...,m

log(p(σ2
i |τ 2, υ)) (4)

where y = (yp,y1, ...,ym), µ = (µp, µ1, ..., µm) and σ2 = (σ2
p, σ

2
1, ..., σ

2
m).
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Estimating θ and κ By taking posterior expectation of the second term

of equation (4), we can get

∑
i=p,1,...,m

E
(

log(p(µi|σ2
i , θ, κ)) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
= −κ

2

∑
i=p,1,...,m

( 1

κt−1 + ni
+

(θ − µ̂i(t−1))
2

σ̃2
i(t−1)

)
− m+ 1

2
log(κ) + C

Thus,
∑

i=p,1,...,mE
(

log(p(µi|σ2
i , θ, κ)) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
can be maxi-

mized by

θopt =
∑

i=p,1,...,m

µ̂i(t−1)

σ̃2
i(t−1)

/
m∑
i=0

1

σ̃2
i(t−1)

κopt = (m+ 1)/
∑

i=p,1,...,m

( 1

κt−1 + ni
+

(θopt − µ̂i(t−1))
2

σ̃2
i(t−1)

)

Estimating τ 2 and υ By taking posterior expectation of the third term

of equation (4), we can get

∑
i=p,1,...,m

E
(

log(p(σ2
i |τ 2, υ)) | y, θt−1, κt−1, τ

2
t−1, υt−1

)
=

(m+ 1)υ

2
log(

υτ 2

2
)− (

υ

2
+ 1)

∑
i=p,1,...,m

(log(
(υt−1 + ni)σ̃

2
i(t−1)

2
)− ψ(

υt−1 + ni
2

))−

τ 2υ

2

∑
i=p,1,...,m

1

σ̃2
i(t−1)

− (m+ 1) log(Γ(
υ

2
)) (5)
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By using approximation of digamma function, which is ψ(υ
2
) ≈ log(υ

2
)−

1
υ
− 1

3υ2
, (5) can be maximized by

τ 2opt =
m+ 1∑

i=p,1,...,m
1

σ̃2
i(t−1)

υopt =
2

3(
√

1 + 4
3
T − 1)

where T = 1
m+1

∑
i=p,1,...,m

(
log(

(υt−1+ni)σ̃
2
i(t−1)

2
)− ψ(υt−1+ni

2
)
)
− log(τ 2opt).
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