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I. VELOCITY CORRELATION FUNCTIONS IN AN ANALYTICALLY SOLVABLE APPROXIMATION
OF THE MODEL.

The model formulated and simulated in the main text is difficult to solve analytically. We consider in the present
appendix an analytically solvable approximation of the model that eases parameter exploration and the analysis of the
role of the different parameters. We keep the velocity and noise equations (Eq. [1,2]) of the main text but consider the
positions of the particles fixed at the vertices of a regular lattice. With this approximation, the repulsive inter-particle
forces cancel each other in Eq. [1]. As a consequence, the velocity equations become linear, and therefore solvable.
The cell velocity equations thus reduce to

dvµj
dt

= −α vµj +
β

NV

∑
k∈Vj

(vµk − v
µ
j ) + σ ηµj , (1)

τ
dηµj
dt

= −ηµj + ξµj , (2)

where the velocity are assigned to the vertices j of a regular lattice. The index µ = 1, 2 denotes the two components,
along x and y, of the two-dimensional vectors, Vj the set of the nearest neighbors of lattice point j , NV the cardinal
of Vj (i.e. the number of these neighbors) and ξµj a white-noise field

〈ξµj (t) ξµ
′

j′ (t′)〉 = δ(t− t′) δj,j′ δµ,µ′ . (3)

The velocity field is a gaussian field since it is the linear transform of the white-noise gaussian field ξ. As such, it is
completely characterized by its two-point correlation function which we compute below. In the following, we focus on
the triangular lattice where each cell has six neighbors and, for comparison, we give also the corresponding expressions
for the square lattice where each cell has four neighbors . Both lattices can be written as the set of points with integer
coordinates on two basis vectors u1, u2

j = j1u1 + j2u2, j1 ∈ Z, j2 ∈ Z, (4)

with

for the square lattice : u1 = aS ex, u2 = aS ex, (5)

and the triangular lattice : u1 =
√

3
2
aT ex +

1
2
aT ey, u2 = aT ey, (6)

where vector ex and ey are two orthonormal vectors in the plane and aS , aT the internode distances of the square and
triangular lattice respectively. The internode distances of the square and triangular lattices are related to the density
ρ of lattice points, i. e. to the cell number density, by

a2
S =

1
ρ
, aT

2 =
2√
3 ρ

. (7)

Eq. (1,3) are easily solved using Fourier transforms with, for instance, for the noise

ξ̃µq =
∑
k

exp(−iq · k) ξµk , (8)

and similar formulas for the other fields. To this end, it is convenient to introduce the vectors q1,q2 of the reciprocal
lattices such that

qn · um = δm,n, m = 1, 2, n = 1, 2. (9)
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For the square lattice, one has simply

q1 =
1
aS

ex,q2 =
1
aS

ey, (10)

while for the triangular lattice, q1 and q2 read

q1 =
2√
3 aT

ex,q2 = − 1√
3 aT

ex +
1
aT

ey. (11)

The velocity field can then be represented as

vµj (t) = σ

∫
D2q exp(iq · j)

∫ t

−∞
dt1

exp[γ(q) (t1 − t)]− exp[(t1 − t)/τ ]
1− τγ(q)

ξ̃µq(t1), (12)

where, with the wavevector q written as q = ρ1q1 + ρ2q2, the integration D2q is defined as the integration over ρ1

and ρ2 in the square domain −π ≤ ρ1, ρ2 ≤ π, D2q ≡ dρ1dρ2/(4π2). Finally the function γ(q) is defined by

γ(q) = α+
β

NV

∑
k∈Vj

{1− exp[iq · (k− j)]}. (13)

More explicitly, one finds

γS(q) = αS +
βS
2

[2− cos(ρ1)− cos(ρ2)], (14)

γT (q) = αT +
βT
3

[3− cos(ρ1)− cos(ρ2)− cos(ρ1 − ρ2)], (15)

for, respectively, the square and triangular lattice. We have added the index of the lattice on the constant β since it
is interesting to compare the results for the two lattices with different values of β.

The velocity correlations are obtained by averaging the explicit representation of Eq. (12) over the white noise ξ
using Eq. (8) and (3). This gives

〈vµj (t)vµ
′

k (t′)〉 = σ2δµ,µ′ (16)∫
D2q

exp[i[q · (j− k)]
2[1− τ2γ2(q)]

{
1

γ(q)
exp(−γ(q) | t− t′ |)− τ exp(

− | t− t′ |
τ

)
}
.

It should noted that the shapes of the correlation functions are independent of the noise amplitude which appears
only as an overall multiplicative factor. The spatial and temporal correlation functions, as given by Eq. (16) and
normalized to 1 at the origin, are plotted in Fig. S4.

II. LEADER CREATION AND BORDER PROGRESSION : SOME SIMPLE ESTIMATES

We consider a simple model in which a portion of interface without leader cells move at a slow speed vs whereas a
leader cell i appearing at tc(i) advances at a fast speed vf (i) at the tip of a finger of width w(i).

At time t, the leader cell i stands at xi(t) with

xi(t) = vf (i)(t− tc(i)) + vstc(i). (17)

For a uniform rate of creation of leader cells in time, the average time of creation of leader cells that appeared before
time t is simply t/2. The average position of a finger tip at time t is thus

xf (t) = 〈xi(t)〉 = (vf + vs)t/2 (18)

where we have denoted the mean leader cell speed by vf and we have assumed that the speed of a leader cell is not
correlated with the time of its appearance. The mean border position xb in a given experiment is thus approximately
given by

xb(t) =
1
L

[∑
i

wixi(t) + vst (L−
∑
i

wi)

]
, (19)
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where L is the strip length (the initial rectilinear border length). Averaging over experiments, one obtains

〈xb(t)〉 = ρ twxf (t) + vst(1− ρwt) = ρ(vf − vs)w t2/2 + vst, (20)

where we have assumed that the total number of finger cells at time t is ρ tL. Taking a negligible vs = 3µm/h, a
rate of leader cell creation ρ = 0.15mm−1h−1, a mean leader cell velocity vf = 18µm/h and a mean finger width of
200µm gives 〈xb(t)〉 ' .25 t2µm h−2 in reasonable agreement with experimental data and simulation results. If finger
creation stops after t = ts, then the epithelium border moves after tc, at the velocity vas it has reached at ts namely

vas = ρ(vf − vs)w tc + vs. (21)

Taking tc = 20− 24h, one obtains, vas = 7.5− 8.5µm/h again in reasonable agreement with the data.


