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Text S2. Supplementary Methods and Results 

The effects of clustering algorithm on mgRF 

In principle, mgRF can take any reasonable clustering result as input as long as 

the identified module structure groups highly-correlated variables together and separates 

uncorrelated variables into different modules. However, if variables are randomly 

grouped into modules, mgRF would assign unnecessary variable importance to 

unrelated variables such that bias both the two-stage candidate variable sampling and 

the modified weighted sampling procedures and eventually leads to low prediction 

accuracy. Here we assessed the robustness of mgRF under different clustering settings 

in the combined mouse weight dataset. We applied mgRF with 10-fold cross-validation 

to obtain the corresponding regression error. For each training folds, we took the output 

of K-means, Hierarchical clustering, random clustering, and HQCut as the input of the 

guidance module structure. For K-means, we used the 1 – correlation as the distance 

measure and iteratively identified given number of clusters. We implemented the 

Hierarchical clustering in Matlab using the ‘linkage’ function with the custom distance 

function as in K-means. For random clustering, given the number of clusters, we 

randomly permuted the membership of variables from the clustering result of K-means 

such that their distributions on the number of variables per cluster are the same as in K-

means. The results of random clustering were averaged over 20 trails. Note that for 

HQCut we do not need to specify the number of clusters as it can automatically identify 

the best number of clusters to optimize the modularity function. Finally we applied 

conventional RF as a baseline to investigate the benefits of clustering before training. As 

shown in Figure S3, the RMSE of HQCut is constantly lower than the other clustering 

settings. When the number of clusters is set to 1180, which is the average number of 

clusters identified by HQCut, K-means and Hierarchical clustering, both achieves 
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promising prediction performance. When the number of clusters is close to the ‘correct’ 

number, both K-means and Hierarchical clustering outperforms the conventional RF, 

indicating that mgRF indeed enhances the prediction performance when putative 

correlated variables are ‘correctly’ grouped. Random clustering on the other hand 

provided incorrect information to mgRF and leads to performance degradation.  

   

Sensitivity of mgRF on mtry (k) 

The mtry (k) parameter in the conventional RF algorithm determines how many 

random variables should be considered at each node of the tree. In mgRF, mtry controls 

the number of modules it random samples at the first stage of candidate variable 

sampling.  A small mtry would result in no enough variables being tested and lead to low 

prediction power. However, a large mtry (close to m, where m is the total number of 

variables/modules) would reduce the diversity of RF because at each split it will evaluate 

almost every possible variables and in turn reduce the effectiveness of RF. Here we set 

mtry to different values (from 0.1*m to 2*m/3) and evaluated the 10-fold cross-validation 

of conventional RF and mgRF on the mouse weight dataset. As shown in Figure S4, our 

current choice of mtry=m/3 for RF and mtry=sqrt(m) achieves satisfactory results in term 

of average RMSE. In addition, the performance of RF and mgRF are relatively stable 

when increasing mtry. As expected, the error goes up as mtry decreases too much 

(<500).    

Simulation Study 

We assessed the performance of mgRF on a simulated dataset with known 

response-relevant variables. With known hidden factors, we aimed to evaluate different 

methods’ ability to recovery the known variable rank. We generated a high-dimensional 

dataset using a non-linear model similar to a well-known regression problem [1] with 

correlated variables. The target outcome is given by: 
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where    (     ) is a Gaussian random noise. The outcome y is associated with three 

prototype factors:   ,   , and   , where     (   ) for i = 1, 2, and 3. Then we 

generated three groups G1, G2, and G3, of correlated variables according to   ,   , and 

   respectively. Variable in each group is given by: 

  
( )     (      

   (   )

    
)   (     )                            (2) 

where   
( ) indicates the j-th variable in group i and    is the size of group i. Apparently 

the correlation between a variable and its generating factor in each group gradually 

decreases as the superscript j increases. We set the size of third group, n3 to 10 and the 

size of second group to n2 =100-n1 for different sizes of the first group, 

 such that we can investigate the effect of varying numbers of 

correlated variables on their importance measure. We generated 500 variables in total 

by adding 390 uninformative variables in random group sizes according to (3): 

  
( )          (     )                           (3) 

where     (   )  and     is uniformly distributed from 1 to 10. Similar to the first three 

groups, uninformative variables are also correlated within group.  

We trained models with 100 observations as described above and then tested 

the models on another 100 observations that were independently generated with the 

same module structure. We evaluated the performance of variable selection from two 

aspects. First, we compared the relative variable importance values of different methods 

to the expected patterns. According to the construction of simulation dataset, we expect 

to observe decreasing variable importance from the first to the third groups 

( for the same j) and decreasing variable importance within 

each group (  for the same i when u < v). For all other groups and 

variables, we expect to see low importance values. Second, we evaluated the stability of 

variable importance across different simulations. Although the absolute values of 

variable importance might change in different simulated dataset due to the noise added 

to the simulation, the overall patterns of variable importance should be relatively stable. 

For each method, we quantitatively measured the stability of their variable selection 

n1 Î {10,30,50,70,90}
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scheme by averaging all pair-wise Pearson’s correlation between variable importance 

vectors generated from 100 simulations. A stable variable selection method should 

achieve a high stability score for all variable importance vectors.  

Figure S5 summarizes the average importance values of variables assigned by 

different methods. Since the number of variables in groups 1 and 2 varies, in order to 

compare patterns of variable importance, we only plotted importance values of 10 

uniformly chosen variables in both groups. All models successfully assigned relatively 

higher importance values to variables in G1, G2, and G3 and low importance to the other 

variables. The bias of variable importance measure is clearly demonstrated in models 

other than mgRF. As the cardinality of G1 increases, importance values of individual 

variables decreases and conversely, as the cardinality of G2 decreases, importance 

values of individual variables increases. In group lasso (Figure S5A), when |G1|=10, the 

pattern of variable importance is as expected but when |G1| > 30, the relative weights 

failes to reflect the true pattern of variables importance. For example, when |G1| = 90, 

most variables in G1 are falsely assigned to smaller importance values than those in G2 

and G3. Interestingly, when |G1| > 30, importance value within group increases as the 

correlation to the hidden factor decreases in both G1 and G2. This is probably because 

the non-linear correlation cannot be successfully modeled by group lasso and random 

noises increase the linear correlation. Elastic net (Figure S5B) and SVR (Figure S5C) 

showed similar weights patterns, where the variable importance is relative stable in G3, 

but apparently biased when the cardinality of group varied (in G1 and G2). In RF (Figure 

S5D), even though the within-group importance decreases as the correlation to the 

hidden factor decreases, the ranking of variables given by original VI is incorrect in that 

when |G1| > 50 (|G1|/|G2| > 1), variables in G2 falsely appears to be more relevant than 

those corresponded in G1. On the contrary, the cVI in mgRF successfully removed the 

bias of variable importance. The pattern of importance measure (cVI) in mgRF remains 

the same regardless varying cardinalities of G1 and G2 (shown in Figure S5E).  

Table S13 shows the stability score of various methods. mgRF achieves the 

highest stability score among all settings. SVR and elastic net are the most unstable 

methods, because usually only one variable from each correlated variable group was 

assigned a nonzero weight and all others in the same group were given 0 weights. Even 
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though the data were generated using the same underlying model in each trail, small 

perturbation on the data (difference among trails) attributed to totally different variables 

being selected, resulting diverse importance vectors. Group lasso improves the stability 

a lot compared to elastic net as expected because the correlation structure is given. RF 

had similar stability pattern to group lasso but has lower stability score as the cardinality 

of G1 increases.      
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