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A brief primer on conditional expectations

Conditional expectations are not commonly used outside of probability and statistics. We present here a

short introduction and list of their properties.

For a random variable Z and a random vector X, the conditional expectation E[Z|X] is itself a random

variable because it is a function of the random variables in X. For continuous random variables, E[Z|X]

is defined as

E[Z|X = x] =

∫
dz z p(z|x) (16)

where p(z|x) is the conditional probability density of Z given X. It satisfies p(z|x) = p(z, x)/p(x), by

Bayes’s rule.

Let Z be any random variable and X any random vector. Among all random variables that are

a function of X, the conditional expectation is the unique random variable which minimizes the mean

squared error of approximating Z using X alone. That is,

E
[(
Z − f(X)

)2]
≥ E

[(
Z − E[Z|X]

)2]
, (17)

with equality if and only if f(X) = E[Z|X] (with probability one). We can interpret E[(Z − f(X))2] as

the magnitude of the fidelity error for the approximation (or representation) of Z by f(X).

The above property applies not just to conditioning on a random vector, but to any conditioning

information. For example, let uHt be the (internal) history of a continuous time stochastic process, u.

Then, among all random variables that are (measurable) functions of the trajectory of u up to time t,

the conditional expectation E[Z|uHt ] minimises the mean squared error of approximating Z using only

the history of u. The minimum mean squared error (MMSE) is therefore given by E[(Z −E[Z|uHt ])2] =

E[V [Z|uHt ]].

The conditional expectation has the following properties for any two random variables Z, Y and any

random vector X:

(i) If Z and X are independent, then

E[Z|X] = E[Z].
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(ii) If Z and Y are conditionally independent given X, then

E[Z|Y,X] = E[Z|X].

(iii) For real constants a and b

E[aZ + bY |X] = aE[Z|X] + bE[Y |X].

(iv) If knowing the random vector X implies that Y is known then

E[ZY |X] = Y E[Z|X],

and so E[g(X)|X] = g(X) for any (measurable) function g(X).

(v) If knowing X implies that Y is known then

E[Z|Y ] = E
[
E[Z|X]

∣∣∣Y ].
(vi) For any X,

E
[
E[Z|X]

]
= E[Z].

General orthogonal decomposition into signal and fidelity error compo-

nents

We are interested in how the dynamics of a network output Z are influenced by several stochastic ‘vari-

ables’, denoted X1,X2, ...,Xk (k ≥ 1). Each Xi will play the role of conditioning information and, formally,

is the σ-field generated by a random variable, random vector or a continuous-time stochastic process. For

a network input, Xi may pertain to a non-dynamic input, a finite-dimensional summary (or ‘statistic’)

of a dynamic input process up to time t, or the history at time t of a continuous-time process. For

biochemical species intrinsic (or internal) to the signal transduction network and for purely confounding

extrinsic processes (e.g. the number of ribosomes), Xi is typically the history of the number of molecules

of the species up to time t. For example, we might want to decompose mechanistic error into components

due to different ‘modules’ in a signaling cascade and due to confounding extrinsic fluctuations [1].

We provide a proof of the orthogonality of the following general decomposition of the random variable

Z(t):

Z(t) = E[Z(t)|X1] +

k∑
i=2

εi(t) + {Z(t)− E[Z(t)|X1,X2, ...,Xk]}, t ≥ 0, (18)

where εi(t) := E[Z(t)|X1,X2, ...,Xi] − E[Z(t)|X1,X2, ...,Xi−1] for i = 2, ..., k, and we define εk+1(t) :=

Z(t)− E[Z(t)|X1,X2, ...,Xk], and ε1(t) := E[Z(t)|X1].

Specifically, we show that the covariance is zero for every pair of random variables (r.v.’s) on the

right-hand side of Eq. 18. It then follows that the the variance of Z(t) is given by the variance of the sum

of these r.v.’s. For those familiar with martingale difference sequences, we then provide a more concise
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proof of the orthogonality. Notice that E[εi(t)] = 0 for i = 2, ..., k+ 1. We need to consider the covariance

of all possible pairs. We do this in 4 stages.

First, we show that Cov[εi(t), εj(t)] = E[εi(t)εj(t)] = 0 for 2 ≤ i < j ≤ k.

E[εi(t)εj(t)] = E{E[εi(t)εj(t)|X1,X2, ...,Xi]}
= E{εi(t)E[(E[Z(t)|X1,X2, ...,Xj ]− E[Z(t)|X1,X2, ...,Xj−1])|X1,X2, ...,Xi]}
= E{εi(t)[E[Z(t)|X1,X2, ...,Xi]− E[Z(t)|X1,X2, ...,Xi]]} = 0, (19)

where the last line follows because i ≤ j − 1 and hence (X1,X2, ...,Xi) ⊆ (X1,X2, ...,Xj−1).
Second, we show that Cov[εi(t), εk+1(t)] = E[εi(t)εk+1(t)] = 0 for 2 ≤ i ≤ k. Reasoning similarly to

the first case,

E[εi(t)εk+1(t)] = E{εi(t)E[(Z(t)− E[Z(t)|X1,X2, ...,Xk+1])|X1,X2, ...,Xi]}
= E{εi(t)[E[Z(t)|X1,X2, ...,Xi]− E[Z(t)|X1,X2, ...,Xi]]} = 0. (20)

Third, we show that Cov[ε1(t), εj(t)] = E{(ε1(t)−E[Z(t)])εj(t)} = 0 for 2 ≤ j ≤ k. Again, with a similar

line of reasoning but conditioning on X1,

E{(ε1(t)− E[Z(t)])εj(t)} = E{(ε1(t)− E[Z(t)])E[εj(t)|X1]} = 0.

Fourth, we show that Cov[ε1(t), εk+1(t)] = E{(ε1(t)− E[Z(t)])εk+1(t)} = 0.

E{(ε1(t)− E[Z(t)])εk+1(t)} = E{(ε1(t)− E[Z(t)])E[εk+1(t)|X1]} = 0.

More concisely, we can write

Z(t)− E[Z(t)] = {ε1(t)− E[Z(t)|X0]}+

k+1∑
i=2

εi(t), (21)

where X0 = {Ω,∅} and therefore ε̃1(t) := {ε1(t)−E[Z(t)|X0]} = ε1(t)−E[Z(t)]. To establish the orthogo-

nality of the decomposition of Z(t), it suffices to notice that the sequence of r.v.’s {ε̃1(t), ε2(t), ..., εk+1(t)}
is a Martingale Difference Sequence (MDS) with respect to the filtration {X0, (X0,X1), (X0,X1,X2), ...,

(X0, ...,Xk)}. This is because the ith r.v. in the sequence has conditional expectation equal to zero given

the ith term in the filtration, for all i = 1, ..., (k+1). It follows immediately from the fact that the sequence

is a MDS that each pair of its constituent r.v.’s is uncorrelated and therefore has zero covariance.

Finally, notice that E[εk+1(t)
2] = E{V [Z(t)|X1,X2, ...,Xk]} and that for i = 2, ..., k,

E[εi(t)
2] = E{E[(E[Z(t)|X1,X2, ...,Xi]− E[Z(t)|X1,X2, ...,Xi−1])2|X1,X2, ...,Xi−1]}

= E{V [E[Z(t)|X1,X2, ...,Xi]|X1,X2, ...,Xi−1]}. (22)

Taken together, the above results also complement the general variance decomposition for dynamic sys-

tems in [1]. They provide an underlying, orthogonal decomposition of the process Z(t) itself. The
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component processes have variances equal to the components of the variance decomposition in [1].

An exact, analytical approach to the dynamics of stochastic biomolec-

ular networks with fluctuating inputs

We show here how to analyse gene expression regulated by fluctuating inputs. The essence of our ap-

proach is to analyse the dynamics of the system in the presence of ‘fixed’ trajectories of the time-varying

propensities. This provides expressions for the conditional moments of the output Z(t) as a function

of the realised history of the stochastic inputs, revealing how the expected network output responds in

continuous time to the fluctuating inputs.

Birth-death process with fluctuating inputs

We begin with the simple but biologically relevant example in which a single molecular species is syn-

thesised and degraded in response to fluctuating inputs. We denote by M(t) the number of molecules of

that species at time t. The master equation with time-varying propensity for molecular births, u(t), and

for deaths, d(t), is given by

dPi(t)

dt
= u(t)Pi−1(t) + d(t)(i+ 1)Pi+1(t)− [u(t) + id(t)]Pi(t), (23)

for i = 1, 2, . . ., with Pi(t) the probability that M(t) equals i. When the propensities are deterministic

functions of time, Eq. 23 can be solved to obtain a bivariate system of differential equations for the first

and second moments. This does not appear to deal with stochastic inputs. Suppose however that the

inputs are exogenous processes: their future paths may depend on their own history but are (conditionally)

independent of the history of M . (More precisely, uH∞⊥⊥MHt |uHt). The signal u then acts as a ‘pure

input’ to the system. Under this condition, the same system of differential equations describes the first

and second conditional moments, where the conditioning is on the history of the inputs at time t denoted

(u, d)Ht , together with the initial condition M0 (subscripts indexing time):

dE[Mt|(u, d)Ht ,M0]

dt
= ut − dtE[Mt|(u, d)Ht ,M0], (24)

and

dE[M2
t |(u, d)Ht ,M0]

dt
= ut + E[Mt|(u, d)Ht ,M0] (25)

·[2ut + dt]− 2dtE[M2
t |(u, d)Ht ,M0].

The conditioning on the initial number of mRNAs should not be omitted if M(0) is non-deterministic, for

example when analysing the (exactly) stationary system. A single birth-death process with fluctuating

inputs and the associated conditional master equation is considered in the Supporting Information of [2]

but the authors do not solve for the individual first and second conditional moments or for the extrinsic

variance component.
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Conditional and unconditional dynamics of gene expression with a fluctuating tran-

scriptional input

We will write M(t) and Z(t) for the number of molecules of mRNA and of protein respectively. Eq. 23

describes the conditional dynamics of mRNA (with d(t) set to its constant degradation rate, dM ). Due

to the hierarchichal structure of the model, protein numbers Z(t) also follow a birth-death process with

the exogenous input M(t)v (where v is the rate constant for the translation reaction).

We will analyse the (second-order) stationary gene expression system with fluctuating, exogenous

transcriptional input u(t). We do not assume a deterministic initial condition. An assumption is needed

on the ‘memory’ of the fluctuations in u. We assume that the expected past (and future) deviation of u

from its mean decreases exponentially in time and is related to the current deviation at time t by:

E[ur − E{u}|ut] = (ut − E{u})e−du|t−r|, (26)

hence Corr(ut, ur) = exp(−du|t− r|). Strictly, we only use that Eq. 26 holds for r < t. Eq. 26 is satisfied,

for example, for all r, t for stationary random telegraph (2-state Markov chain) and birth-death processes.

Solving Eq. 24 for the dynamics of the first conditional moment of mRNA levels yields

E[Mt|uHt ,M0] = M0e
−dM t +

∫ t

0
u(s)e−dM (t−s)ds. (27)

We can take the (unconditional) expectation of both sides of this equation (interchanging the order of

the expectation and integration with respect to time) to find that the stationary mean of mRNA is given

by E[Mt] = E{E[Mt|uHt ,M0]} = E[ut]/dM .

Notice that, for all t > 0, E[Zt|uHt ,M
Ht ,M0, Z0] = E[Zt|uHt ,M

Ht ,M0, Z0] because Z
Ht⊥⊥uHt

|MHt ,M0, Z0. The differential equations analogous to Eq. 24 and 25 for the dynamics of the first

and second conditional moments of protein levels are thus

dE[Zt|uHt ,M
Ht ,M0, Z0]

dt
= vMt − dZE[Zt|uHt ,M

Ht
,M0, Z0],

and

dE[Z2
t |uHt ,M

Ht ,M0, Z0]

dt
= vMt + E[Zt|uHt ,M

Ht
,M0, Z0][2vMt + dZ ]− 2dZE[Z2

t |uHt ,M
Ht
,M0, Z0].

Solving these yields

E[Zt|uHt ,M
Ht
,M0, Z0] = Z0e

−dZt +

∫ t

0
vMse

−dZ(t−s)ds, (28)

and

E[Z2
t |uHt ,M

Ht
,M0, Z0] = Z2

0e
−2dZt+

∫ t

0
{vMs+E[Zs|uHs,M

Hs
,M0, Z0][2vMs+dZ ]}e−2dZ(t−s)ds. (29)

To derive Eq. 9 (main text) we use the relationship E[Z(t)|uHt ,M0, Z0] = E[E[Z(t)|MHt , Z0]|uHt ,M0, Z0]
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and Eq. 28. We thus find that

E[Z(t)|uHt ,M0, Z0] = Z0e
−dZt +

∫ t

0
vE[Ms|uHs ,M0]e

−dZ(t−s)ds (30)

= Z0e
−dZt +

vM0

(dZ − dM )
(e−dM t − e−dZt) + v

∫ t

0

∫ s

0
ure
−dZt+(dZ−dM )s+dMrdrds

, f1(Z0, t) + f2(M0, t) + v

∫ t

0
f3(s;u(r), r ≤ s)ds,

where the second line follows from Eq. 27 and the exogeneity of the input (and the third line defines the

functions f1, f2 and the functional f3). Eq. 9 is the special case M0 = Z0 = 0.

We take the expectation of Eq. 28 to find that the stationary mean protein level is given by E[Zt] =

vE[Mt]/dZ . To derive the stationary variance of protein levels we use Eq. 29 and the relationship E[Z2
t ] =

E{E[Z2
t |uHt ,M

Ht ,M0, Z0]}. We thus find, since MsE[Zs|uHs,MHs
,M0, Z0] = E[MsZs|uHs,MHs

,M0, Z0]

and the unconditional moments involved are time-invariant in this stationary setting, that

E[Z2
t ] = E[Zt] + vE[MtZt]/dZ . (31)

Now E[MtZt] = E{MtE[Zt|MHt ,M0, Z0]} and hence by Eq. 28,

E[MtZt] = e−dZtE[MtZ0] + v

∫ t

0
E[MtMs]e

−dZ(t−s)ds. (32)

Furthermore, E[MtMs] = E{MsE[Mt|Ms, u
Ht ]}, where E[Mt|Ms, u

Ht ] is given by the analogue of Eq. 27

in which s rather than zero is the initial time. To fund the autocovariance of mRNA, we will thus need

the moment E[Msur] for r > s ≥ 0. Notice that E[Msur] = E{urE[Ms|uHs,M0]} with the conditional

moment given by Eq. 27, since the exogeneity of the input implies that Ms⊥⊥uHr|uHs,M0. We find that

in the stationary case,

E[Msur] = E[M ]E[u] + Cov(ur, us)/(du + dM ), (33)

(where we have used that E[Msur] must depend only on (r− s) and therefore taken the limit of E[Msur]

as r, s→∞ holding (r − s) constant). It follows that

E[MtMs] = E[M2
t ]e−dM |t−s| +

E[u]2

d2M
(1− e−dM |t−s|) +

V [u]

(dM − du)(dM + du)
(e−du|t−s| − e−dM |t−s|).

Combining this expression for E[MtMs] with Eq. 32 (after taking the limit of E[MtZt] as t → ∞,
which is justified since E[MtZt] is time-invariant), and substituting into Eq. 31 yields V [Zt], using that

V [Zt] = E[Z2
t ]−E[Zt]

2. We find V [Zt] as given by the sum of the 3 variance components in Eqs. 11, 12,

and 76 (main text).

Quantifying fidelity errors by evaluating the variance components analytically

We first provide an outline of the main steps used to evaluate the magnitudes of the fidelity errors, given

that we have now derived V [Zt] (see previous section of SI).
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1. Derive V {E[Z(t)|u(t)]} using E[Z(t)|u(t)] = E[E[Z(t)|uHt , M(0), Z(0)]|u(t)]. We find, as expected

from Eq. 10, that V {E[Z(t)|u(t)]} = V [u]v2/(du + dM )2(du + dZ)2. The magnitude of the total

fidelity error εf (t) = εd(t) + εm(t) can now be quantified as equal to the difference V [Z(t)] −
V {E[Z(t)|u(t)]}.

2. Derive E[εm(t)2] using Eq. 9 and step 1. above. Without altering the essence of the interpretations

of the error components, we can make the analysis considerably more tractable by conditioning also

on the initial condition, for example defining εm(t) = Z(t) − E[Z(t)|uHt ,M(0), Z(0)]. The steady-

state magnitude of the mechanistic error is found as limt→∞E{V [Z(t)|uHt ,M(0), Z(0)]} = E[Z2]−
limt→∞E{E[Z(t)|uHt ,M(0), Z(0)]2}, where E[Z(t)|uHt , M(0), Z(0)] is derived as for Eq. 9 (but

without assuming M(0) = Z(0) = 0).

3. Find E[εd(t)
2] = V [Z(t)]− V {E[Z(t)|u(t)]} − E[εm(t)2] using the results of steps 1. to 3. above.

Step 1. From Eq. 30 and the relationship E[Zt|ut] = E[E[Zt|uHt ]|ut] we obtain

E[Zt|ut] =

{
E[E[Z0|u0]|ut]e−dZt +

vE[E[M0|u0]|ut]
(dZ − dM )

(e−dM t − e−dZt)
}

+{
v

∫ t

0

∫ s

0
E[ur|ut]e−dZt+(dZ−dM )s+dMrdrds

}
(34)

, m1(ut, t) +m2(ut, t).

with E[ur|ut] given by Eq. 26. The expression for E[Zt|ut] in Eq. 10 (main text) then follows by setting

M0 = Z0 = 0 and letting t → ∞. We want to derive V {E[Z(t)|u(t)]} using Eq. 34. Since u(t) is

stationary, the second moment V {E[Z(t)|u(t)]} is time-invariant. A valid approach is therefore to take

the variance of Eq. 34 and then take the limit of the resultant expression as t → ∞. The subsequent

derivation is quite subtle.

Notice that V {E[Z(t)|u(t)]} depends only on the variances and covariance of m1(ut, t) and m2(ut, t),

moments which depend on ut via its time-invariant (stationary) distribution. Let U be some r.v. with

that same distribution. We then see that limt→∞ V [m1(U, t)] = 0. Furthermore, provided that m2(U, t)

is bounded by an integrable r.v. for all t (physically a weak assuption), then limt→∞ V [m2(U, t)] =

V [limt→∞m2(U, t)]. Similarly, provided that m1(U, t)m2(U, t) is bounded by an integrable r.v. for all t

(physically a weak assuption), then limt→∞Cov[m1(U, t),m2(U, t)] = 0. Putting all this together yields

V {E[Z(t)|u(t)]} = V [limt→∞m2(U, t)] = V [u]v2/(du + dM )2(du + dZ)2, as stated in Eq. 11 (main text).

Step 2. As explained in the main text, the steady-state magnitude of the intrinsic noise is equal to

limt→∞E{V [Zt|uHt ,M0, Z0]} = E[Z2]− limt→∞E{E[Zt|uHt ,M0, Z0]
2}, where E[Zt|uHt , M0, Z0] is given

by Eq. 30 and we derived E[Z2] in the previous section to find the total variance of protein levels. It

follows from Eq. 30, using the notation established there, that

E{E[Zt|uHt ,M0, Z0]
2} = E

{[
f1(Z0, t) + f2(M0, t) + v

∫ t

0
f3(s;u(r), r ≤ s)ds

]2}
.

The right-hand side is clearly the sum of 6 expected values. On taking the limit as t→∞, all but one of

these 6 terms converges to zero. We do not go into lengthy details concerning the other 5 terms, but note
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that their evaluation requires the (stationary) moments E[Z2
t ], E[M2

t ], E[MtZt], E[M0ut] and E[Z0ut].

The last of these has not been derived above. Notice that E[Z0ut] = E{Z0E[ut|u0, Z0]} = E{Z0E[ut|u0]},
where we have used the exogeneity of the input u and E[ut|u0] is given by 26.

The only non-zero term in the limit is given by

lim
t→∞

v2E

{[∫ t

0
f3(s)ds

]2}
= lim

t→∞
v2E

{∫ t

0

∫ t

0
f3(s1)f3(s2)ds1ds2

}
(35)

= lim
t→∞

v2
∫ t

0

∫ t

0

∫ s2

0

∫ s1

0
E{ur1ur2}e−2dZt+(dZ−dM )(s1+s2)+dM (r1+r2)du1du2ds1ds2

= E[Z2
t ] +

V [u]v2(du + dM + dZ)

dZdM (dZ+dM )(du + dM )(du + dZ)
,

where we have used that the autocorrelation of u implied by Eq. 26 gives E{ur1ur2} = E[u]2 +

V [u]e−du|r2−r1|. Evaluation of the multiple integral in Eq. 35 requires some care, being careful to distin-

guish when s1 ≤ s2 and s2 ≤ s1.

Step 3. is immediate

Modeling promoter activity

To model the propensity of the transcription reaction, we follow the approach based on statistical me-

chanics and pioneered by Ackers et al. [3] to calculate the transcriptional propensity, r. We assume that

an input û(t) acts immediately as a transcriptional activator. For example, û(t) could be the level of a

hormone that directly binds and activates a transcription factor that is itself pre-bound to the promoter

of the target gene. The input u(t), which we have defined as a rate, is then proportional to wû(t), where

w is the rate of transcription when the promoter is in an active, transcription-ready state. In the notation

that follows, we do not explicitly write the time dependence of any random variables.

No feedback

We assume that the promoter can be bound by RNA polymerase, denoted P , and by the input û:

rno = w
KPP +KP,uPû

1 +KPP +Kuû+KP,uPû
, (36)

where the Ki are DNA binding affinities (association constants). The transcriptional propensity is pro-

portional to the probability at time t that the DNA is bound by RNA polymerase. If we further assume

that transcription occurs only in the presence of û, then

rno = w
KP,uPû

1 +KPP +Kuû+KP,uPû
, (37)

which simplies to

rno ' w
KP,uP

1 +KPP
û, (38)
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if û binds weakly so that 1 + KPP � (Ku + KP,uP )û. For a constant level of polymerase P , Eq. 38 is

the form we use in the two-stage model of gene expression without feedback by absorbing the constant

prefactor into the definition for u: u(t) = w
KP,uP
1+KPP

û(t).

Negative autoregulatory feedback

If Z, the protein coded by the gene, is a repressor and can bind to its own promoter then

rneg = w
KPP +KP,uPû

1 +KPP +Kuû+KP,uPû+KZZ
. (39)

Assuming that transcription occurs only in the presence of û and that 1+KpP � (Ku+KP,u)û as before,

then

rneg ' w
Kp,uPû

1 +KPP +KZZ

= w

KP,uP
1+KPP

û

1 + KZ
1+KPP

Z
. (40)

Eq. 40 is used in the main text with K1 = KZ
1+KPP

and u(t) = w
KP,uP
1+KPP

û(t). We note that this definition

of u(t) is consistent with the no feedback case and that u(t) is a rate (with units given by the reciprocal

of time).

Positive autoregulatory feedback

If Z is an activator and binds to its own promoter then

rpos = w
KPP +KP,uPû+KP,ZPZ +KP,u,ZPûZ

1 +KPP +Kuû+KP,uPû+KZZ +KP,ZPZ +Ku,Z ûZ +KP,u,ZPûZ
. (41)

If û is required for transcription and 1 +KPP � (Ku +KP,u)û then

rpos ' w
KP,uPû+KP,ZPZ +KP,u,ZPûZ

1 +KPP +KZZ +KP,ZPZ +Ku,Z ûZ +KP,u,ZPûZ

' w
KP,uPû+KP,ZPZ +KP,u,ZPûZ

1 +KPP +KZZ +KP,ZPZ
(42)

if further 1 +KPP � (Ku,Z +KP,u,ZP )ûZ also holds. Finally, we assume that Z and û cannot simulta-

neously bind to the promoter

rpos ' w
KP,uPû+KP,ZPZ

1 +KPP +KZZ +KP,ZPZ

= w

KP,uP
1+KPP

û+
KP,ZP
1+KPP

Z

1 +
KZ+KP,ZP
1+KPP

Z

=
u+ wK1Z

1 + (K1 +K2)Z
(43)
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with K1 =
KP,ZP
1+KPP

, K2 = KZ
1+KPP

, and u(t) = w
KP,uP
1+KPP

û(t).

Quantifying fidelity errors using Langevin theory

Using Langevin theory [4], we can derive approximate expressions for the fidelty errors and their magni-

tudes. Our approximation improves the closer the system is to both stationary-state and the ‘determin-

istic’ high copy number limit.

Modeling the fluctuating input

We model the input u(t) as an Ornstein-Uhlenbeck (OU) process. A Gaussian OU process is specified

entirely by its mean, variance, and autocorrelation time. It is only these properties of the input that

determine the magnitudes of the fidelity errors in our exact solution for the two-stage model of gene

expression.

We use a stochastic differential equation to describe the dynamics of u:

u̇ = −(ut − E[u])dU + ξ1(t), (44)

where ξ1(t) is a white noise term that satisfies

E[ξ1(t)ξ1(t
′)] = 2dUV [u]δ(t− t′), (45)

using the Kronecker delta, and has E[ξ1] = 0.

Modeling the biochemical network

Within Langevin theory, the dynamics of a biochemical system are modelled as a set of coupled stochastic

differential equations [5]. If we let X be a vector, with Xi the copy number of the ith chemical species

in the network, and assume that the dynamics of the network tend to a stationary state, then we can

linearize the differential equations around that stationary state to give

Ẋ = A (Xt − E[X]) + ξ(t), (46)

where A is the Jacobian of the system evaluated at the stationary mean concentrations, E[X]. The ξi

are stochastic variables with E[ξi] = 0 and

E[ξi(t)ξj(t
′)] = Γijδ(t− t′), (47)

where the diffusion matrix Γij describes the fluctuations in the system and is related to the stoichiometric

matrix, S, and the propensities of each reaction, p, by Γ = S diag(p) ST [6].

This approximate system can be solved using linear algebra [7]. Let Bij be an eigenvector of A with

eigenvalue λ(j) such that ∑
j

AijBjk = λ(k)Bik. (48)
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Then we have

Xi(t) = E[Xi] +
∑
j,k

Bije
λ(j)tB−1jk (Xk(0)− E[Xk]) +

∑
j,k

∫ t

0
dsBije

λ(j)(t−s)B−1jk ξk(s), (49)

for the dynamics of Xi(t) near steady-state. The autocorrelation function is

E[Xi(t1)Xj(t2)]− E[Xi]E[Xj ]

=
∑
p,q,r,s

BipBjr
Γqs

λ(p) + λ(r)

[
eλ

(p)t1+λ(r)t2 − eλ
(p)(t1−t2)

]
B−1pq B

−1
rs , (50)

for t1 > t2 and the stationary variance is therefore

V [Xi] = −
∑
p,q,r,s

BipBir
Γqs

λ(p) + λ(r)
B−1pq B

−1
rs . (51)

The solution for the input u

From Eq. 44 and 49, the input ut satisfies

ut2 = E[u] +

∫ t2

t1

dt′ e−dU (t2−t′)ξ1(t
′) + (ut1 − E[u])e−dU(t2−t1) (52)

for t2 > t1. Hence u(t) depends on (is measurable with respect to) the history of ξ1(t).

Taking expectations of Eq. 52 conditional on ut1 gives

E[ut2 |ut1 ] = E[u] +

∫ t2

t1

dt′ e−dU (t2−t′)E[ξ1(t
′)|ut1 ] + (ut1 − E[u])e−dU(t2−t1) (53)

but E[ξ1(t)|ut1 ] = 0 for t > t1 because the value of ξ1 at the current time is independent of the values of

ξ1 at earlier times. Hence

E[ut2 |ut1 ] = E[u] + (ut1 − E[u])e−dU (t2−t1) (54)

and E[ut2 |ut1 ] tends to the stationary mean E[u] if t2 � t1, as expected. Noting that E[ut2ut1 ] =

E[E[ut2ut1 |ut1 ]] = E[ut1E[ut2 |ut1 ]], Eq. 54 implies

E[ut2ut1 ]− E[u]2 = V [u]e−dU (t2−t1) (55)

and the input u has an exponential autocorrelation function with an autocorrelation time of 1/dU , a

known property of an Ornstein-Uhlenbeck process [4].

We also have (by time-reversibility of u) that

E[ut1 |ut2 ] = E[u] + (ut2 − E[u])e−dU (t2−t1) (56)

when t2 > t1, so that events far in the future do not affect current values of u. Taking expectations of
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Eq. 52 conditional now on t2 implies

ut2 = E[u] +

∫ t2

t1

dt′E[ξ(t′)|ut2 ]e−dU (t2−t′) + (E[ut1 |ut2 ]− E[u])e−dU (t2−t1). (57)

Using Eq. 56 to replace E[ut1 |ut2 ] gives

ut2 = E[u] +

∫ t2

t1

dt′E[ξ(t′)|ut2 ]e−dU (t2−t′) + (ut2 − E[u])e−2dU (t2−t1) (58)

which is an equation for E[ξ(t)|ut2 ]. This equation can be solved by differentiating with respect to t1,

and we find that

E[ξ1(t1)|ut2 ] = 2dU (ut2 − E[u])e−dU (t2−t1) (59)

which is non-zero because ut2 depends on the value ξ1 takes at time t1 < t2.

Modeling gene expression with a fluctuating transcriptional input: no feedback

To illustrate the Langevin method, we will show that the method recovers our exact results for the two-

stage model of gene expression without feedback (in the case where u(t) is an OU process). The model

has a fluctuating rate of transcription u(t) and the signal of interest, s(t), is the current value of u. To

the differential equation for u, Eq. 44, we must add a differential equation for mRNA and one for protein:

Ṁ = ut − dMMt + ξ2(t)

Ż = vMt − dZZt + ξ3(t), (60)

with the ξi obeying the diffusion matrix

Γ =

 2dUV [u] 0 0

0 2E[u] 0

0 0 2E[u] v
dM

 (61)

because E[u] = dME[M ] from Eq. 60.

Notice that

E[Zt|uHt ] = E[Zt|ξHt
1 ], (62)

since we have the conditional independence Zt⊥⊥uHt |ξHt
1 , by Eq. 49.

Determining the variance of Z

Calculating the eigenvectors and eigenvalues of the Jacobian for Eqs. 44 and 60, Eq. 51 then gives imme-

diately that

V [Z] = E[Z] +
dZ

dM + dZ

E[Z]2

E[M ]
+

(dM + dU + dZ)v2V [u]

dMdZ(dM + dU )(dM + dZ)(dU + dZ)
, (63)

with

E[M ] = E[u]
dM

; E[Z] = E[u]v
dMdZ

. (64)
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Conditioning Zt on the history of u

The conditional expectation E[Zt|uHt ] is key to finding the fidelty errors when the signal of interest is ut

(see Eqs. 69 and 62 and 76). From Eq. 49, we find that at steady-state

Zt = E[Z] +

∫ t

0
ds
[
vf1(s, t)ξ1(s) + vf2(s, t)ξ2(s) + edZ(s−t)ξ3(s)

]
, (65)

where

f1(s, t) =
edM (s−t)

(dM − dU )(dM − dZ)
− edU (s−t)

(dM − dU )(dU − dZ)
+

edZ(s−t)

(dM − dZ)(dU − dZ)
, (66)

and

f2(s, t) =
edM (s−t) − edZ(s−t)

dZ − dM
. (67)

To find E[Zt|uHt ], we can condition on the history of ξ1(t) by Eq. 62, giving

E[Zt|uHt ] = E[Z] + v

∫ t

0
ds f1(s, t)ξ1(s) (68)

because E[ξ2,s|ξHt
1 ] = E[ξ3,s|ξHt

1 ] = 0 for all s < t.

Determining the variance of the transformed signal

When the signal of interest is ut, E[Zt|ut] is the perfect representation of the signal by the output. To

find E[Zt|ut], we use the relation:

E[Zt|ut] = E
[
E[Zt|uHt ]

∣∣∣ut]. (69)

From Eq. 68, we therefore have

E[Zt|ut] = E[Z] +

∫ t

0
ds f1(s, t)vE[ξ1(s)|ut], (70)

or

E[Zt|ut] = E[Z] +

∫ t

0
ds f1(s, t)v2dU (ut − E[u])edU (s−t), (71)

using Eq. 59. Carrying out this integral, and taking the steady-state limit of t→∞, we find that

E[Zt|ut] = E[Z] +
v(ut − E[u])

(dM + dU )(dU + dZ)
. (72)

The variance of this conditional expectation is

V
[
E[Zt|ut]

]
= E

[
E[Zt|ut]2

]
−
(
E[E[Zt|ut]]

)2
, (73)
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and so from Eq. 72

V
[
E[Zt|ut]

]
= E[Z]2 +

V [u]v2

(dM + dU )2(dU + dZ)2
− E[Z]2

=
V [u]v2

(dM + dU )2(dU + dZ)2
. (74)

Using E[Z] = vE[u]
dMdZ

, Eq. 74 can be re-written as

V
[
E[Zt|ut]

]
= E[Z]2

[
dMdZ

(dM + dU )(dU + dZ)

]2
η2u, (75)

with η2u = V [u]/E[u]2.

Determining the magnitude of the mechanistic error

For an input ut, the magnitude of the mechanistic error, E[ε2m], is E[V [Zt|uHt ]]. By definition,

E
[
V [Zt|uHt ]

]
= E

[
V [Zt|ξHt

1 ]
]

= E
[
E[Z2

t |ξHt
1 ]
]
− E

[
E[Zt|ξHt

1 ]2
]

= E[Z2]− E
[
E[Zt|ξHt

1 ]2
]
. (76)

From Eq. 68,

E
[
E[Zt|ξHt

1 ]2
]

= E[Z]2 + v2
∫ t

0
ds

∫ t

0
ds′ f1(s, t)f1(s

′, t)E[ξ1(s)ξ1(s
′)], (77)

which, from Eq. 45, becomes

E
[
E[Zt|ξHt

1 ]2
]

= E[Z]2 + v2
∫ t

0
ds f1(s, t)

22dUV [u]. (78)

Evaluting this integral and taking the steady-state limit of t→∞, we find

E
[
E[Zt|ξHt

1 ]2
]

= E[Z]2 +
(dM + dU + dZ)v2V [u]

dMdZ(dM + dU )(dM + dZ)(dU + dZ)
. (79)

Hence, from Eq. 76 and Eq. 79,

E
[
V [Zt|uHt ]

]
= V [Z]− (dM + dU + dZ)v2V [u]

dMdZ(dM + dU )(dM + dZ)(dU + dZ)
, (80)

and therefore we have for the magnitude of the mechanistic error

E[ε2m] = E
[
V [Zt|uHt ]

]
= E[Z] +

dZ
dM + dZ

E[Z]2

E[M ]
, (81)

from Eq. 63.
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Determining the magnitude of the dynamical error

With a signal ut, the magnitude of the dynamical error, E[ε2d], is E[V [E[Zt|uHt ]|ut]], which is the difference

of Eq. 63 and the sum of Eqs. 74 and 81,

E[ε2d] =
(dM + dU + dZ)v2V [u]

dMdZ(dM + dU )(dM + dZ)(dU + dZ)
− V [u]v2

(dM + dU )2(dU + dZ)2
(82)

which can be re-written as

E[ε2d] = E[Z]2η2u

[
dMdUdZ

{
(dU + dZ)2 + dM (dM + 2dU + 3dZ)

}
(dM + dU )2(dM + dZ)(dU + dZ)2

,

]
(83)

using E[Z] = vE[u]
dMdZ

.

Modeling gene expression with a fluctuating transcriptional input: negative autoreg-

ulation

When we include negative autoregulation, our system becomes

u̇t = −(ut − E[u])dU + ξ1(t)

Ṁt =
ut

1 +K1Zt
− dMMt + ξ2(t)

Żt = vMt − dZZt + ξ3(t) (84)

with E[ξi(t)] = 0 and

Γ =

 2dUV [u] 0 0

0 dME[M ] + E[u]
1+K1E[Z] 0

0 0 vE[M ] + dZE[Z]

 . (85)

We linearize Eq. 84 around the stationary state and proceed as before using Eqs. 49 and 51. The solution

for Zt is similar in form to Eq. 65 and Eqs. 69 and 76 still hold. The algebra is more involved and although

we can find explicit solutions we do not give them here.

Modeling gene expression with a fluctuating transcriptional input: positive autoreg-

ulation

With positive autoregulation, our system is

u̇t = −(ut − E[u])dU + ξ1(t)

Ṁt =
wK1Zt + ut

1 + (K1 +K2)Zt
− dMMt + ξ2(t)

Żt = vMt − dZZt + ξ3(t) (86)



16

with E[ξi(t)] = 0 and

Γ =

 2dUV [u] 0 0

0 dME[M ] + wK1E[Z]+E[u]
1+(K1+K2)E[Z] 0

0 0 vE[M ] + dZE[Z]

 . (87)

with w being the rate of transcription from the active promoter. We linearize Eq. 86 and proceed as

before.

Analysing the sensitivity of the fidelity errors to feedback strength

We gain intuition about the effects of negative and positive feedback on signaling fidelity by plotting the

transcription propensities, which are proportional to Eqs. 40 and 43, against protein level, Z, for different

values of u and feedback strength, K1 (Fig. S1). As K1 →∞ with fixed Z > 0, r(Z, u) tends to zero for

negative feedback and to the constant w for positive feedback, limits which do not depend on the value of

u. For large feedback strengths, K1, the propensity curves become indistinguishable for different values

of u (except at low values of Z) for both the negative and positive feedback systems. Furthermore, for

positive feedback, the propensity curves are closer together at the higher values of Z favored by stronger

positive feedback. We thus anticipate that strong negative and strong positive feedback will result in low

fidelity.

Figure S1. Transcription propensity as a function of the input value, u, and feedback
strength, K1. For different values of K1 the transcription propensity is plotted for u = E[u] (solid lines) and
u = E[u]± 1.96V [u]1/2 (upper and lower boundaries of the shaded areas), with E[u] and V [u] as in Fig. 5. (A) In
the negative feedback system the transcription propensity is given by u/ [1 +K1Z]. (B) In the positive feedback
system the propensity is given by [wK1Z + u] / [1 + (K1 +K2)Z]. As K1 increases, the propensity curves become
indistinguishable for different values of u (except at low values of Z), for both the negative and positive feedback
systems. For the positive feedback system we set K2 = 10−7 and w = 1s−1.

For a static input and a given parametrisation of each system, the propensity curve r(Z, u;K1) deter-

mines the distribution of Z(t) for the given value of the input u. As K1 increases away from the case with

no feedback (K1 = 0), the propensity curves corresponding to different values of u become closer to one

another (Fig. S1). We anticipate that, at least for a static input u, increasing either negative or positive
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feedback will make it more difficult for the system to discriminate between different values of the input

and signaling fidelity will deteriorate.

In the limit of a ‘static’ input

We want to analyze the case where fluctuations in the input u(t) are sufficiently slow that the input is

effectively constant over the timescales of relevance for the biochemical system. To do this, we analyse

the variance components and fidelity errors from the Langevin analysis in the limit du → 0, that is in the

limit of large autocorrelation time, du
−1. We hold other parameters constant, including the variance of

u(t).

As we expect, both dynamical errors, E[εd
2(t)] and E[ε̃d

2(t)], converge to zero in this limit. The

fluctuations in u(t) are too slow to give rise to any dynamical error. The partial derivatives with respect

to feedback strength, K1, of the (limiting) variance of the transformed signal, V {E[Z(t)|u(t)]}, are given

by

− 4v3E[u]V [u]

dMdZ(dMdZK
−1
1 + 4vE[u])2K2

1

(88)

for negative feedback and by

− v2(−2dMdZ(1− 2E[u])v + 2K1v
2)V [u]

(d2Md
2
Z − 2dMdZ(K1 − 2(K1 +K2)E[u])v +K2

1v
2)2

, (89)

for positive feedback, where we have rescaled time so that w is equal to one by definition for all parametri-

sations of the system.

The ‘signal’ variance is therefore decreasing inK1 for all feedback strengths for negative autoregulation,

and decreasing for all feedback strengths K1 >
dMdZ
v (1− 2E[u]) for positive autoregulation. In the latter

case, non-monotonic behavior of the ‘signal’ variance occurs if E[u] < 1
2 and K1 can be made sufficiently

small without violating the condition for positive feedback, u(t) < K1
K1+K2

. The effect on fidelity of the

changes in the variance of the transformed signal depends on how the mechanistic variance changes for

each type of feedback (and on the initial levels of the variance components).

The sensitivities to feedback strength of the mechanistic variance component and of the (relative)

fidelity errors are complicated. We determine the signs of the relevant partial derivatives for the biophys-

ically plausible parameter space given in Table S1, excluding the parameter du, and using the sampling

procedure described immediately below.

dM dZ dU E[u(t)] V [u(t)]
1
2 v K2

Minimum 6.4× 10−4 5× 10−5 1× 10−6 1× 10−3 E[u(t)]/[3.29× 10] 4× 10−3 1× 10−7

Maximum 1.1× 10−2 4× 10−4 1× 10−3 5× 10−1 E[u(t)]/3.29 5× 10−2 1× 10−5

Table S1. The biophysically plausible parameter space. The minimum and maximum of the interval
of values allowed for each parameter are reported. The parameters are variation free, that is, the parameter space
is given by the Cartesian product of these intervals. The units of all parameters are s−1 (and per molecule where
relevant). The maximum standard deviation of u(t) is set so that, when u(t) is the Gaussian Ornstein-Uhlenbeck

process, the probability of u(t) ≤ 0 is bounded above by 0.001 (no matter what value of V [u(t)]
1
2 is sampled). For

the positive feedback system, we set w = 1s−1 and the minimum K1 considered is set so that u(t) < w K1

K1+K2
with

a probability that is bounded below by 0.999. For the negative feedback system, K1 ∈ [10−3, 10].
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As expected, we find that the mechanistic variance is always decreasing in feedback strength, K1,

for negative feedback [8] and always increasing for positive feedback (500 models sampled for both sys-

tems). For negative feedback, the (relative) fidelity error E[ε̃f (t)2] (equivalently, the mechanistic error)

always increases as K1 is increased. The mechanistic variance does not decrease sufficiently strongly to

outweigh the effect of the decreased ‘signal’ variance. For positive feedback, the relative fidelity error is

again typically increasing in the feedback strength for all values of K1 in the parameter space (88% of

models sampled), despite the non-monotonic behavior of the ‘signal’ variance (observed for 97% of models

sampled). The reduction in fidelity error, E[ε̃m(t)2], from using a value of K1 greater than the minimal

one allowed was less than 0.001 for all models sampled.

With a fluctuating transcriptional input

The analytical sensitivities for the fidelity error magnitudes are again complicated. We therefore determine

their signs for the biophysically plausible parameter space given in Table S1. The parameter space is the

same for the negative and positive feedback systems, except for the absence of the parameter K2 in the case

of negative feedback. We choose the allowed ranges for each parameter using values typical for E. coli and

relying on experimental measurements reported in the literature wherever possible (see [8]). We randomly

and uniformly sample models from the parameter space (1000 negative feedback and 500 positive feedback

models) and ask how the dynamical, mechanistic and fidelity errors change as the feedback strength K1

is varied. As we sample, the parameter space governing fluctuations of u(t) is also explored. Specifically,

we determine the signs of the analytical partial derivatives of the magnitudes of the (relative) dynamical,

mechanistic and fidelity errors with respect to feedback strength, K1. We do this for values of K1 in a

predetermined range (i.e., without sampling values of K1, see Table S1), for each parametrisation of the

system that is sampled, by maximizing or minimizing the relevant partial derivative with respect to K1.

We also determine, for each such system, the value of K1 that minimizes the (relative) fidelity error. The

results are discussed in the main text.

The effect on fidelity of varying feedback strength with the gain held

constant

In our feedback models, the faithfully transformed signal is a linear function of u(t): E[Z(t)|u(t)] =

c + gu(t), for constants c and g. We define g to be the gain of the network for the signal of interest,

u(t). The variance of the transformed signal or ‘dynamic range’, V {E[Z(t)|u(t)]}, is equal to g2V [u(t)].

Varying K1 alone (with V [u(t)] held constant), the gain and hence the variance of the transformed signal

also vary.

We investigated the effect of varying K1 while simultaneously altering the translation rate (v) in order

to hold the gain constant. Since we do not in general have v as an explicit function of K1, we can no

longer compute the sensitivities of the fidelity errors to K1. Instead, starting with a randomly sampled

parameter vector, we numerically minimise the (relative) fidelity error, E[ε̃f (t)2], with respect to K1. At

each step of the minimisation procedure, a new K1 is chosen, together with a value of v which results in

the same gain (as that for the initially sampled parameter vector). We then compare the fidelity errors

corresponding to the optimal K1 and to the initially sampled parameter vector.
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For the negative feedback models (both with static and dynamic inputs), we sampled 500 parameter

vectors at random from the biophysically plausible parameter space in Table S1, and optimised K1 over

the same range of values considered throughout (K1 ∈ [10−3, 10]). In the static case, we find almost

always that the absolute mechanistic error increases and the fidelity therefore decreases if the feedback

strength, K1, is increased (> 99.5% of models sampled): hence the optimal K1 is the minimum allowed

value. When the input is dynamic, we find the (relative and absolute) dynamical error decreases with

increased K1 while the (relative and absolute) mechanistic error increases (and vice versa when K1 is

decreased compared to its initial value). However, in the dynamic case there is now usually an optimal

feedback strength, K1, below and above which fidelity deteriorates (> 98% of models sampled).

In our hands, the analogous procedure for the positive feedback model did not result in a convergent

numerical optimisation procedure, perhaps owing to the multiple solutions that exist for translation rates

to achieve constant gain.

Quantifying fidelity errors using a numerical, Monte Carlo method

We can evaluate the magnitudes of the fidelity errors (Eq. 6 main text) for any signaling network and

choice of the signal of interest, s(t), provided that we can simulate the input process, u(t) (and given

the necessary computational resources). Using an extension of the ‘Gillespie’ simulation algorithm that

allows propensities to vary stochastically between reaction times [9], we include in the simulated reaction

network a ‘conjugate reporter’ Z2(t) that is independent of and identically distributed to the output Z(t),

conditional upon the input history uHt . This requires in silico duplication of the network ‘downstream’ of

the input u(t). The average squared deviation of the 2 reporters then identifies the mechanistic error [1],

since
1

2
E{[Z(t)− Z2(t)]

2} = E{V [Z(t)|uHt} = E[εm(t)2].

The mechanistic error can be estimated by taking the sample average of [Z(t)−Z2(t)]
2 over different times

t using a single simulated realisation of the system (in the ergodic case) or by independently generating

multiple realisations of the system (including the input u) and taking the ensemble average at time

t. We evaluate the dynamical error indirectly, by obtaining a simulated sample from the distribution

of the signal-output pair, [s(t), Z(t)], and then estimating the conditional means E[Z(t)|s(t)]. When

s(t) has a small number of possible states, the conditional means can be estimated by the average of

the outputs corresponding to each input state. Otherwise, a flexible ‘curve-fitting’ or nonparametric

regression technique is used to estimate the function E[Z(t)|s(t)]. Using the known distribution of s(t),

possibly the empirical one from the simulation output, we can then estimate the variance of E[Z(t)|s(t)].
Finally, we evaluate the dynamical error using E[εd(t)

2] = V [Z(t)]−V {E[Z(t)|s(t)]}−E[εm(t)2], by Eq.6.

Figure S2 illustrates the effect of positive feedback on signaling fidelity when the input process, u(t),

switches between two states (uh and ul) according to a two-state Markov Chain (or ‘random telegraph

process’) and s(t) = u(t). It is the analogue of Fig. 4, which is for negative autoregulation. As for negative

feedback, increasing positive feedback strength reduces dynamical error but increases mechanistic error,

and overall fidelity deteriorates. For both figures, the protein level of each conjugate reporter was sampled

at the times ti (i = 1, ..., N), with the frequency of sampling set as ti+1 − ti = 10d−1u , where d−1u is the

autocorrelation time of u(t). The sample population was divided into two parts, Sl and Sh, based on the
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Figure S2. Increasing positive feedback strength harms signaling fidelity. We consider a 2-
stage model of gene expression with the signal of interest, s(t), being the value of the current input, u(t), which
is proportional to the level of a transcriptional activator. We simulate u(t) as in Fig. 1A. Upper row compares
the time course of the protein output (blue) to the faithfully transformed signal (red), E[Z(t)|u(t)]. Lower row
shows the distributions for the output, Z, that correspond to each of the two possible values of the input, u (low
and high). Vertical lines indicate the means of the distributions. Pie charts show the fractions of the variance
of each (conditional) distribution due to dynamical (d) and mechanistic (m) error, weighted by the probability of
the input state: summing these gives the overall magnitude (variance) of the dynamical and mechanistic errors.
(A) no feedback, K1 = 0. (B) intermediate positive feedback, K1 = 5 · 10−4, K2 = 10−7. (C) strong positive
feedback, K1 = 10−3, K2 = 10−7. As the strength of feedback increases, (relative) mechanistic error increases
and the underlying state of the input becomes more difficult to infer (the conditional distributions overlap more).
Transcription propensities are given by [wK1Z(t) + u(t)] / [1 + (K1 +K2)Z(t)] with w = 1, and all parameters
except K1 and K2 and are as in Fig. 4.

state of the signal u(t) at the time of sampling. The two samples were used to estimate the conditional

distributions shown in Figures S2 and 4 (lower rows) as well as the conditional mean E[Z(t)|u(t) = u.]

and variance V [Z(t)|u(t) = u.] for the two possible values of the signal u. ∈ ul, uh. To calculate the

magnitude of the conditional fidelity errors we use the expression

V [Z(t)|u(t) = u.] = E[ε2m(t)|u(t) = u.] + E[ε2d(t)|u(t) = u.]. (90)

That is, the conditional variance of Z(t) can be decomposed into two terms describing the magnitude

of the conditional mechanistic and conditional dynamical error. Using a long simulation time, the first

term can be found from the sample average of the squared difference between the two conjugate reporters,

|S.|−1
∑

i∈S.
[Z(ti)−Z2(ti)]

2/2. Then, the second term corresponds to the difference between the estimated

conditional variance and the estimated conditional mechanistic error. Note that the magnitude of the

total mechanistic or dynamical error is obtained by taking the average of the corresponding conditional

ones using the stationary distribution of u(t).

As a further illustration, we also applied our general numerical method for quantifying fidelity errors

when u(t) is a Gaussian Ornstein-Uhlenbeck process. We are thus able to assess the adequacy of the

Langevin approximations for the negative and positive feedback systems. Using a long simulation time,
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Figure S3. The deterioration in signaling fidelity when negative feedback strength increases
is well described by the Langevin analysis. We consider a 2-stage model of gene expression with the
signal of interest s(t) = u(t), and with u(t) proportional to the level of a transcriptional activator and modeled as an
Ornstein-Uhlenbeck process. Upper row in panels A to C compares the time course of the protein output (blue) to
the perfect signal representation, E[Z(t)|u(t)] (red), and to the expected output given the input history, E[Z(t)|uHt ]
(black). Pie chart insets show the fractions of the protein variance due to the mechanistic (m) and dynamical (d)
errors, and due to the transformed signal. Lower row shows time courses of the error magnitudes. (A) no feedback,
K1 = 0 (B) intermediate negative feedback (K1 = 0.1). (C) strong negative feedback (K1 = 1). (D) The magnitude
of the dynamical error, ε̃d(t), and of the mechanistic error, ε̃m(t), as a function of the feedback strength, K1 (the
‘signal’ component is 1 minus the magnitude of the (relative) fidelity error). Circles are for the numerical procedure
and solid lines for the Langevin analysis. Transcription propensities are given by u(t)/ [1 +K1Z(t)]. All parameters
except K1 are as in Fig. 5.

we estimate V [Z(t)] by the sample variance of one of the conjugate reporters, and estimate E[ε2m(t)]

using the 2 conjugate reporters by the sample average N−1
∑N

i=1[Z(ti) − Z2(ti)]
2/2. The estimation of

the regression function E[Z(t)|u(t)] was performed for the simulated sample {[Z(ti), u(ti)]; i = 1, ..., N}
using a cubic smoothing spline (Matlab built-in function csaps with default parameters). Figures S3 and

S4 illustrate the close agreement between the numerical results and those obtained using the Langevin

theory, for both the negative and positive feedback systems.

Combining outputs from multiple cells improves fidelity

We consider the signaling fidelity achieved by the average or aggregate output of a group of N identical

cells receiving the same fluctuating input, u(t). The absolute dynamical error for the average output is

the same as that for each individual cell because

E[Z̄(t)|uHt ] = E[Zi(t)|uHt ], (91)

where Z̄(t) = N−1
∑N

i=1 Zi(t) is the average output of the group, and Zi(t) is the output of the ith

individual cell. Therefore, after taking conditional expectations with respect to s(t) in Eq. 91, we also

have that E[Z̄(t)|s(t)] = E[Zi(t)|s(t)], since s(t) is known when the history of u at time t is known
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Figure S4. The deterioration in signaling fidelity when positive feedback strength increases
is well described by the Langevin analysis. We consider a 2-stage model of gene expression with the
signal of interest s(t) = u(t), and with u(t) proportional to the level of a transcriptional activator and modeled
as an Ornstein-Uhlenbeck process. Upper row in panels A to C compares the time course of the protein output
(blue) to the perfect signal representation, E[Z(t)|u(t)] (red), and to the expected output given the input history,
E[Z(t)|uHt ] (black). Pie chart insets show the fractions of the protein variance due to the mechanistic (m) and
dynamical (d) errors, and due to the transformed signal. Lower row shows time courses of the error magnitudes.
(A) no feedback, K1 = 0. (B) intermediate positive feedback (K1 = 5 · 10−4). (C) strong positive feedback
(K1 = 10−3). (D) The magnitude of the dynamical error, ε̃d(t), and of the mechanistic error, ε̃m(t), as a function of
the feedback strength, K1 (the ‘signal’ component is 1 minus the magnitude of the (relative) fidelity error). Circles
are for the numerical procedure and solid lines for the Langevin analysis. Transcription propensities are given by
[wK1Z(t) + u(t)] / [1 + (K1 +K2)Z(t)], with K2 = 10−7 and w = 1 throughout the figure. All parameters except
K1,K2 are as in Fig. 5.

(σ[s(t)] ⊆ uHt). The dynamical error is therefore unchanged and equal to εd,i(t), that for an individual

cell.

When the cells are also independent (given uHt), the fidelity for both the average output of the group,

Z̄(t), and for the aggregate output,
∑N

i=1 Zi(t), becomes

fidelitygroup =
V {E[Zi(t)|s(t)]}

E[ε2d,i(t)] +N−1E[ε2m,i(t)]
, (92)

where εm,i(t) is the mechanistic error for an individual cell and we have again used E[Z̄(t)|s(t)] =

E[Zi(t)|s(t)] to obtain the numerator. Note that the (absolute) mechanistic error for the average output

of the group has magnitude equal to E{V [Z̄(t)|uHt ]} = N−1E[ε2m,i(t)]. Our theory thus predicts that

fidelity must be higher for the group of independent, identical cells, by comparing Eq.’s 7 and 92.

Designing dynamic synthetic networks

Suppose the target response for a synthetic network is given by r(t), which is a function of the input

trajectory, uHt . We can think of the target as a response to some particular feature of the input history,

the signal of interest s(t), and write r(t) = R(s(t)). Sometimes, network responses differing only by
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scaling constants will have very different desirability in a synthetic setting. For example, when R(s(t))

gives the target number of molecules for secretion by the cell. It is then appropriate to use the magnitudes

of the absolute fidelity errors rather than those of the relative errors. Eq. 5 is readily extended to give

the following decomposition of the discrepancy between the actual and target network responses:

Z(t)− r(t) = {E[Z(t)|s(t)]− r(t)}+ εd(t) + εm(t), (93)

for all t ≥ 0, where the definitions and interpretations of the two errors εd(t) and εm(t) are unchanged.

There is now an additional error term, εr(t) := {E[Z(t)|s(t)]−r(t)}, arising from the possible discrepancy

between the conditional mean and the ideal response R(s(t)). The magnitude of the fidelity error becomes

the objective to be minimised by the synthetic design and decomposes as

E{[Z(t)− r(t)]2} = E[εr(t)]
2 + E[εd(t)

2] + E[εm(t)2]. (94)
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