
Text S1

Our analysis does not depend on the orientation of the moving frame B
In this section we show that our analysis of variance, in particular eq. (35), does not depend on the
orientation of the moving frame B. In particular, we will show that all the vector quantities used in our
formulation, when expressed with respect to (w.r.t.) a new, rotated moving frame will simply be rotated
by the same matrix defining the rotation of the new moving frame w.r.t. to the old one. Eventually,
computing variance in eq.(35) will only involve inner products between such vectors, which we will show
to be invariant to rotations. Intuitively, the angle between two vectors does not change if both vectors
undergo the same rotation.

Consider a new moving frame B′, with new axes {c′1, c′2, c′3} which are related to the old axes via
a fixed, arbitrary, constant rotation Rx. Hereafter, we shall adopt the following naming conventions:
different names will denote different vectors; upper-case names will denote vectors with coordinates w.r.t
the fixed frame S; for lower-case names, the ‘prime’ symbol (′) will denote coordinates w.r.t. B′, otherwise
coordinates are w.r.t. B. For example, c′3 and e3 are different vectors but both happen to have coordinates
[0 0 1]T when expressed w.r.t B′ and B, respectively. On the other hand, the same vector e3 = [0 0 1]T

(aligned with the tool axis, by definition) can be represented w.r.t B′ by e′3 = RT
x e3, i.e. the third column

of the matrix RT
x .

Therefore a tool pose, described by g = {R,P grip} w.r.t. the old moving frame B, would now be
described as g′ = {R′,P grip} w.r.t. B′ where

R′ = RRx ←→ R = R′RT
x

Note that the position coordinates P grip are expressed w.r.t to the fixed frame S, therefore would be
unaffected by a change of moving frame.

Eq. (24)–(25) are still valid but, if rewritten in terms of R′, would now be

P tip = P grip − λRe3 = P grip − λR′ RT
x e3

V tip = V grip − λ Ṙe3 = V grip − λ Ṙ′ RT
x e3.

Expressing the velocities in new body coordinates v′
tip and v′

grip, via the transformations V tip =
R′ v′

tip and V grip = R′ v′
grip, we obtain

v′
tip = v′

grip − λ ω′ ×
(
RT

x e3
)

or

v′
tip = J ′

[
v′
grip

ω′

]
where the new Jacobian J ′ is as follows (I is the 3× 3 identity matrix):

J ′ =
[
I λ ̂(RT

x e3)
]

We shall maintain the same metric form of eq.(19) because the only parameter defining the metric λ
is unchanged as we are considering a new moving frame B′ which has the same origin as the old moving
frame B, i.e. the same distance from the tool-tip.

The null space can be computed in the new moving frame coordinates by imposing 0 = J ′[v′ ω′]. The
following vectors form a basis for the null space in the new coordinates

n′
j =

[
RT

x 0
0 RT

x

]
nj



where j = 1, 2, 3. This can be verified by checking that J ′n′
j = RT

x (Jnj) = 0, for j = 1, 2, 3. Similarly,
we can verify that the following vectors consitute a basis for the orthogonal complement

o′
j =

[
RT

x 0
0 RT

x

]
oj

This means that the null space and the orthogonal space are unchanged, although the coordinates of their
basis vectors are different (all rotated by RT

x ) simply because expressed with respect to another reference
frame.

Remark: a different metric with λ′ ̸= λ would have led to a different orthogonal complement, while
the null space would have been unchanged as it does not depend on the metric (however, the ‘length’ of
its vectors would have been affected by the new scale λ′).

When computing the mean pose via equation of (32), it is clear that the mean position (first equation)
is not affected by the orientation of the moving frame. As for the mean orientation, suppose that we
compute the average rotation R0 for a sequence Ri expressed with respect to the old moving frame via
the second of (32). At the same time, for the same sequence of physical positions of the tool, imagine we
compute the mean rotation R′

0 from poses w.r.t. the new body frame B′, corresponding to a sequence of
rotations R′

i = RiRx. By means of the following properties (see [19])

∥A log∨(B)∥ = ∥ log∨(B)∥ (S1.1)

log∨(ABAT ) = A log∨(B) (S1.2)

where A and B are rotation matrices, the following algebraic manipulations can be derived:

R′
0 = argmin

R′

N∑
i=1

∥ log∨(R′T
i R′)∥2

(S1.1),(S1.2)
= argmin

R′

N∑
i=1

∥ log∨(RxR
′T
i R′RT

x )∥2

= argmin
R′

N∑
i=1

∥ log∨((R′
iR

T
x )

TR′RT
x )∥2

=

(
argmin
R′RT

x

N∑
i=1

∥ log∨((R′
iR

T
x )

TR′RT
x )∥2

)
Rx

=

(
argmin

R

N∑
i=1

∥ log∨(RT
i R)∥2

)
Rx

= R0Rx

The deviations from the mean can then be computed as

∆′
i =

[
R′T

0 (P i − P 0)
log∨ (R′T

0 R′
i)

]
=

[
RT

xR
T
0 (P i − P 0)

log∨ (RT
xR

T
0 RiRx)

]
=

[
RT

xR
T
0 (P i − P 0)

RT
x log∨ (RT

0 Ri)

]
=

[
RT

x 0
0 RT

x

]
∆i

Therefore, deviations ∆′
i as well as null vectors n

′
i and orthogonal complement o′

i represent the same
vectors as ∆i,ni,oi (respectively), simply with coordinates rotated by RT

x , due to the change of moving
frame. As the inner product (20) is invariant to rotations, the projections in eq.(34) as well as equation
(35) are invariant to rotations of the moving frame.

Q.E.D.


